Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4712
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkkurt, Sedat-
dc.date.accessioned2016-06-02T12:29:08Z
dc.date.available2016-06-02T12:29:08Z
dc.date.issued2004
dc.identifier.citationAkkurt, S. (2004). Prediction of the slag corrosion of MgO-C ladle refractories by the use of artificial neural networks. Key Engineering Materials, 264-268(III), 1727-1730. doi:10.4028/www.scientific.net/KEM.264-268.1727en_US
dc.identifier.issn1013-9826
dc.identifier.issn1013-9826-
dc.identifier.urihttp://doi.org/10.4028/www.scientific.net/KEM.264-268.1727
dc.identifier.urihttp://hdl.handle.net/11147/4712
dc.descriptionProceedings of the 8th Conference and Exhibition of the European Ceramic Society; Istanbul; Turkey; 29 June 2003 through 3 July 2003en_US
dc.description.abstractA multilayer feed-forward back-propagation learning algorithm was employed as an artificial neural network (ANN) tool to create a model to predict the corrosion of MgO-C ladle refractory bricks based on laboratory slag corrosion test data. The corrosion process occurred by immersion of the rectangular refractory specimens in molten slag-steel bath. An ANN model to predict the amount of corrosion was created by using the training data. The model was also tested with experimentally measured data and relatively low error levels were achieved. This model was then used to predict the response of the slag-corrosion system to different values of the factors affecting the corrosion of bricks at high temperatures. Exposure time, exposure temperature of slag-brick contact and CaO/SiO2 ratio of the slag were the factors used for modelling. Model results provided the potential for selection of the best conditions for avoiding the factor combinations that may accelerate corrosion.en_US
dc.language.isoenen_US
dc.publisherTrans Tech Publicationsen_US
dc.relation.ispartofKey Engineering Materialsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectCorrosionen_US
dc.subjectMgO-C refractoryen_US
dc.subjectMagnesium compoundsen_US
dc.subjectSlag-corrosion systemsen_US
dc.titlePrediction of the Slag Corrosion of Mgo-C Ladle Refractories by the Use of Artificial Neural Networksen_US
dc.typeConference Objecten_US
dc.authoridTR3591en_US
dc.institutionauthorAkkurt, Sedat-
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.volume264-268en_US
dc.identifier.issueIIIen_US
dc.identifier.startpage1727en_US
dc.identifier.endpage1730en_US
dc.identifier.wosWOS:000223059700413en_US
dc.identifier.scopus2-s2.0-8644236754en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.4028/www.scientific.net/KEM.264-268.1727-
dc.relation.doi10.4028/www.scientific.net/KEM.264-268.1727en_US
dc.coverage.doi10.4028/www.scientific.net/KEM.264-268.1727en_US
dc.identifier.scopusqualityQ4-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.dept03.09. Department of Materials Science and Engineering-
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
4712.pdfConference Paper171.62 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Apr 14, 2023

WEB OF SCIENCETM
Citations

2
checked on Nov 9, 2024

Page view(s)

978
checked on Dec 23, 2024

Download(s)

1,176
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.