Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/4712
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Akkurt, Sedat | - |
dc.date.accessioned | 2016-06-02T12:29:08Z | |
dc.date.available | 2016-06-02T12:29:08Z | |
dc.date.issued | 2004 | |
dc.identifier.citation | Akkurt, S. (2004). Prediction of the slag corrosion of MgO-C ladle refractories by the use of artificial neural networks. Key Engineering Materials, 264-268(III), 1727-1730. doi:10.4028/www.scientific.net/KEM.264-268.1727 | en_US |
dc.identifier.issn | 1013-9826 | |
dc.identifier.issn | 1013-9826 | - |
dc.identifier.uri | http://doi.org/10.4028/www.scientific.net/KEM.264-268.1727 | |
dc.identifier.uri | http://hdl.handle.net/11147/4712 | |
dc.description | Proceedings of the 8th Conference and Exhibition of the European Ceramic Society; Istanbul; Turkey; 29 June 2003 through 3 July 2003 | en_US |
dc.description.abstract | A multilayer feed-forward back-propagation learning algorithm was employed as an artificial neural network (ANN) tool to create a model to predict the corrosion of MgO-C ladle refractory bricks based on laboratory slag corrosion test data. The corrosion process occurred by immersion of the rectangular refractory specimens in molten slag-steel bath. An ANN model to predict the amount of corrosion was created by using the training data. The model was also tested with experimentally measured data and relatively low error levels were achieved. This model was then used to predict the response of the slag-corrosion system to different values of the factors affecting the corrosion of bricks at high temperatures. Exposure time, exposure temperature of slag-brick contact and CaO/SiO2 ratio of the slag were the factors used for modelling. Model results provided the potential for selection of the best conditions for avoiding the factor combinations that may accelerate corrosion. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Trans Tech Publications | en_US |
dc.relation.ispartof | Key Engineering Materials | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Artificial neural networks | en_US |
dc.subject | Corrosion | en_US |
dc.subject | MgO-C refractory | en_US |
dc.subject | Magnesium compounds | en_US |
dc.subject | Slag-corrosion systems | en_US |
dc.title | Prediction of the Slag Corrosion of Mgo-C Ladle Refractories by the Use of Artificial Neural Networks | en_US |
dc.type | Conference Object | en_US |
dc.authorid | TR3591 | en_US |
dc.institutionauthor | Akkurt, Sedat | - |
dc.department | İzmir Institute of Technology. Mechanical Engineering | en_US |
dc.identifier.volume | 264-268 | en_US |
dc.identifier.issue | III | en_US |
dc.identifier.startpage | 1727 | en_US |
dc.identifier.endpage | 1730 | en_US |
dc.identifier.wos | WOS:000223059700413 | en_US |
dc.identifier.scopus | 2-s2.0-8644236754 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.4028/www.scientific.net/KEM.264-268.1727 | - |
dc.relation.doi | 10.4028/www.scientific.net/KEM.264-268.1727 | en_US |
dc.coverage.doi | 10.4028/www.scientific.net/KEM.264-268.1727 | en_US |
dc.identifier.scopusquality | Q4 | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
crisitem.author.dept | 03.09. Department of Materials Science and Engineering | - |
Appears in Collections: | Mechanical Engineering / Makina Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Apr 14, 2023
WEB OF SCIENCETM
Citations
2
checked on Nov 9, 2024
Page view(s)
978
checked on Dec 23, 2024
Download(s)
1,176
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.