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Abstract. A multilayer feed-forward back-propagation learning algorithm was employed as an 

artificial neural network (ANN) tool to create a model to predict the corrosion of MgO-C ladle 

refractory bricks based on laboratory slag corrosion test data. The corrosion process occurred by 

immersion of the rectangular refractory specimens in molten slag-steel bath. An ANN model to 

predict the amount of corrosion was created by using the training data. The model was also tested 

with experimentally measured data and relatively low error levels were achieved. This model was 

then used to predict the response of the slag-corrosion system to different values of the factors 

affecting the corrosion of bricks at high temperatures. Exposure time, exposure temperature of slag-

brick contact and CaO/SiO2 ratio of the slag were the factors used for modelling. Model results 

provided the potential for selection of the best conditions for avoiding the factor combinations that 

may accelerate corrosion.  

Introduction 

MgO-C refractories are extensively used in slag-lines of primary steelmaking vessels and secondary 

refining ladles. Their service lives are now as high as 30000 in Basic Oxygen Furnaces (BOF) 

compared to significantly lower lives of as low as 25 heats/lining  in ladle refining furnaces. Factors 

affecting the corrosion of these bricks were previously investigated in a number of studies [1,3]. 

Some of the main corrosion parameters are the presence of a slag coating on the brick, the brick 

microstructure, the quality of brick components like periclase grains, type of antioxidants, graphite 

flakes, the resin used, thermomechanical loads, slag chemistry, viscosity and so on.  

 

It is theoretically possible to produce a wear model based on laboratory tests and then to correlate 

that model to actual furnace practice. The precision that can be achieved by any wear model is 

directly related to the precision of the data used to develop that model. Predictive models can be 

made from laboratory experiments provided the data are statistically significant and have a known 

and small variance [4]. There are two approaches to modelling of refractory corrosion: models 

based on laboratory tests and those based on industrial data. In the former case, the scale of the test 

and the dynamics are significantly different from those that occur in an actual production furnace 

but more controlled and fundamental data can be generated. In the latter case, a large number of 

replications is required to get precision and a large spead of data (e.g.10-50% variation) is common. 

Artifical neural networks (ANN) are ideally suited for modelling such systems.  

 

In a recent study, a statistical experimental design technique was used for modelling the corrosion 

process [5]. The effects of factors like time, temperature and slag chemistry on corrosion were 

reported in that study. Data obtained in that work are employed in this research by feeding them to 

an ANN simulator algorithm to create a model for the prediction of the corrosion of industrial MgO-

C ladle refractory bricks in molten steel refining slags. ANN are used for modelling complex 

systems in a wide range of fields [6-7]. Most ceramic and refractories related projects (e.g. 
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refractory processing, particle sizing, drying, firing, etc.)  involve the study of the effects of selected 

parameters like time, temperature, pressure on a response (e.g. density, porosity, hot strength, 

corrosion resistance). Such processes can be modelled by ANN by feeding plant data in the model 

construction. The model can then be used to predict the response of the system to different 

parameter combinations.  Steelmakers can determine the potential problem areas by using the ANN 

model developed here or they can use their data to create a model for their particular system.  

 

ANN Modelling 

 

In the present study, the common three layer, feed forward type of ANN, as shown in Fig. 1, was 

adopted for the prediction of the amount of corrosion. In a feedforward network, the inputs are fed 

into the input layer, which passes them on to the hidden layer neurons after multiplying by a weight. 

A hidden layer neuron adds up the weighted input received from each input neuron, associates it 

with a bias, and then passes the result on through a non-linear transfer function. The same operation 

is done in the output layer [7].  
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Figure 1. The three-layer ANN model [6]. 

ANN can be trained by back-propagation (BP), 

which is the most commonly used supervised 

training algorithm.  In back-propagation 

networks, inputs are processed in the forward 

direction from the input layer to the hidden layer 

and then to the output layer (Fig. 1).  The 

objective of a back propagation network is, by 

minimizing a predetermined error function, to 

find the optimal weights which would generate 

an output vector Y= (y1, y2,...,yp) as close as 

possible to target values of output vector T = (t1, 

t2,...,tp)  with   a   selected   accuracy.      Detailed 

[7] information regarding the ANN can be found in reference. Development of an ANN model 

involves the use of training and testing data sets that are only random selections from the complete 

original data. The model is first trained and then tested with measured data to determine the error of 

the model.  

 

Data collection. The data used in ANN modelling had been collected from the corrosion testing 

setup in a previous study of the author, and the resulting data were modelled using statistical 

methods [3,5]. Characterization of the same bricks were also performed in a previous study [8]. The 

tests were conducted in an argon and/or CO(g) atmosphere in a vertical tube furnace that was heated 

by MoSi2 heating elements. 1.4 x 1.4 x 7 cm sized rectangular brick specimens attached to a 

calcium aluminate cement holder were half immersed in the slag melt for a prescribed amount of 

time. The slag melt was kept in a high alumina crucible which was placed in a larger safety crucible. 

The tests were done without rotating the samples although rotation was possible in the experimental 

setup. Upon completion of each run the samples were raised up and kept there until the furnace 

cooled. Samples were then longitudinally cut in half, mounted in polyester resin and polished to 

determine percent area loss by corrosion. All data are listed in Table 1.  

 

Model Construction. The ANN architecture that was constructed was of three layer feed forward 

type with six neurons in the input layer for the six input variables. In the hidden layer, six neurons 

were chosen by trial and error. Finally, in the output layer one neuron was chosen for the output 

variable of percent area loss. The input variables were as follows: 
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x1: %CO(g) in test atmosphere, x3: Test temperature (
o
C) 

x2: Brick-slag exposure time, min. x4: CaO/SiO2 ratio of the slag 

Table 1. Experimental data used in 

ANN model building. 
 Input parameters Output (T) 

Exp 

No. 

%CO Time 

(min) 

T (
o
C) C/S* % Area 

Loss 

(Measured) 

1 0 100 1640 1.7 41.22 

2 0 100 1600 1.7 20.08 

3 0 20 1640 1.7 22.82 

4 0 100 1620 0.9 15.23 

5 0 20 1620 0.9 18.89 

6 0 20 1620 2.6 2.97 

7 0 60 1600 0.9 24.83 

8 0 60 1600 2.6 17.41 

9 0 60 1620 1.7 16.18 

10 0 60 1620 1.7 14.26 

11 0.05 100 1640 1.7 30.87 

12 0.05 100 1600 1.7 18.85 

13 0.05 20 1640 1.7 21.14 

14 0.05 20 1600 1.7 12.55 

15 0.05 100 1620 2.6 10.73 

16 0.05 20 1620 0.9 18.43 

17 0.05 20 1620 2.6 6.28 

18 0.05 60 1640 0.9 12.55 

19 0.05 60 1640 2.6 15.47 

20 0.05 60 1600 0.9 24.03 

21 0.05 60 1600 2.6 3.98 

22 0.05 60 1620 1.7 16.65 

23 0.05 60 1620 1.7 15.25 

*C/S = CaO/SiO2 

This is shown in Figure 1 where the four input quantities 

are fed to the leftmost column. Neurons are fully 

connected to each node in the neighboring layers. No 

bias term was used but a momentum term was used to 

help to obtain faster convergence during  iterations. A 

total of 30 data sets were employed, of which 23 were 

used for the training of the ANN and the remainder for 

testing of the model. Each data set had 5 components 

(x1, x2, ...,x4; y) 4 of which were the input variables 

while the fifth one is the output variable. The program 

operated for 80000 iterations and the optimal weights 

were successfully calculated (r
2
=0.89). 

Testing phase. Because of the limited number of 

experimental data only seven testing outputs were 

compared to measured data (Table 2). The performance 

of the model was quite satisfactory with average percent 

testing error of 14.2% (r
2
=0.92). 

Sensitivity analysis. Sensitivity analysis is     done by 

feeding the developed ANN model to predict outputs  

(percent area loss) for varying levels   of   the   input    

factor     effects  (time, temperature and C/S). In this 

study, combined effects of two factors are presented to 

save space. During the sensitivity analysis the 

temperature range of 1600-1640
o
C and the time range of 

(0-100 minutes) were divided into 10 subdivisions, and a 

total of 100 predicted percent area  loss  values were 

obtained (Fig. 2). Similar procedure is applied for the 

other two factor combinations. 

 

 

Table 2. Results of testing of the model. 

% Area loss 

(measured)  

% Area loss 

(predicted)  

Difference %Error 

(Absolute) 

10.57 12.43 -1.86 17.6 

10.85 14.57 -3.72 34.3 

14.65 14.85 -0.20 1.4 

18.99 18.94 0.05 0.3 

19.20 18.05 1.15 6.0 

32.34 24.80 7.54 23.3 

15.67 18.27 -2.60 16.6 

  Average 14.2 

Only two of the dual factor surface plots are given here 

for the sake of brevity. Sensitivity analysis enables 

researcher or plant operator to quickly identify the 

experimental conditions for highest wear so that he can 

avoid problem areas. Figs. 2-3, based on the results of 

prediction runs of the ANN model, show the effects of 

two factors at a time on each surface plot of the percent 

area loss. The effects of time and temperature on 

percent area loss in argon atmosphere is shown in Fig. 

2. The increasing temperature leads to an increase of 

percent area loss at all levels of time. Insignificant 

interaction   is   observed between time and temperature 

factors. Fig. 3 shows a surface plot of the effects of  C/S ratio and temperature on percent area loss 

in argon + CO(g) atmosphere. Relationships observed between factor effects and the percent area 

loss by the above mentioned plots conform to the general understanding of corrosion systems. Such 

plots are especially useful when a researcher seeks interactions between factor effects and a visual 

way of inspecting system behavior. 
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Figure 2. Time-temperature surface plot for 

percent area loss in argon atmosphere. 

Figure 3. CaO/SiO2-temperature surface plot 

for percent area loss in Ar + 5%CO 

atmosphere. 

 

Conclusions 

 

In this study, a three layer ANN model is developed for the prediction of percent area loss in a 

laboratory slag corrosion system of MgO-C ladle refractories. The satisfactory predictions of the 

observed percent area loss by the model indicates that ANN could be a useful tool for modelling 

refractory corrosion systems.  

ANN modelling is able to produce surface plots to visually understand the system via sensitivity 

analysis. Consequently, the model could be utilized by plant operators to avoid potentially corrosive 

factor combinations during plant operations. Using an extension of this approach, large numbers of 

plant data on refractory recess thickness, slag chemistry, number of heats per day, type of steel, 

slag/steel volume ratio, tap-to-tap time and temperature, and the degree of mixing of ladle can be 

used to create a model to predict refractory corrosion.  
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