Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4656
Title: Resonance solitons as black holes in Madelung fluid
Authors: Pashaev, Oktay
Lee, Jyh Hao
Keywords: Acoustic metric
Black holes
Jackiw-Teitelboim gravity
Madelung fluid
Nonlinear Schrödinger equation
Quantum potential
Resonance
Publisher: World Scientific Publishing Co. Pte Ltd
Source: Pashaev, O., and Lee, Y. H. (2002). Resonance solitons as black holes in Madelung fluid. Modern Physics Letters A, 17(24), 1601-1619. doi:10.1142/S0217732302007995
Abstract: Envelope solitons of the Nonlinear Schrödinger equation (NLS) under quantum potential's influence are studied. Corresponding problem is found to be integrable for an arbitrary strength, s ≠ 1, of the quantum potential. For s < 1, the model is equivalent to the usual NLS with rescaled coupling constant, while for s > 1, to the reaction-diffusion system. The last one is related to the anti-de Sitter (AdS) space valued Heisenberg model, realizing a particular gauge fixing condition of the (1 + 1)-dimensional Jackiw-Teitelboim gravity. For this gravity model, by the Madelung fluid representation we derive the acoustic form of the space-time metric. The space-time points, where dispersion changes the sign, correspond to the event horizon, while the soliton solution to the AdS black hole. Moving with the above bounded velocity, it describes evolution on the one sheet hyperboloid with nontrivial winding number, and creates under collision, the resonance states which we study by the Hirota bilinear method.
URI: http://dx.doi.org/10.1142/S0217732302007995
http://hdl.handle.net/11147/4656
ISSN: 0217-7323
0217-7323
17936632
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
4656.pdfMakale471.78 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

89
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

89
checked on Oct 5, 2024

Page view(s)

210
checked on Nov 18, 2024

Download(s)

282
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.