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Envelope solitons of the Nonlinear Schrödinger equation (NLS) under quantum poten-
tial’s influence are studied. Corresponding problem is found to be integrable for an
arbitrary strength, s 6= 1, of the quantum potential. For s < 1, the model is equivalent
to the usual NLS with rescaled coupling constant, while for s > 1, to the reaction–
diffusion system. The last one is related to the anti-de Sitter (AdS) space valued Heisen-
berg model, realizing a particular gauge fixing condition of the (1 + 1)-dimensional
Jackiw–Teitelboim gravity. For this gravity model, by the Madelung fluid representation
we derive the acoustic form of the space–time metric. The space–time points, where
dispersion changes the sign, correspond to the event horizon, while the soliton solution
to the AdS black hole. Moving with the above bounded velocity, it describes evolution on
the one sheet hyperboloid with nontrivial winding number, and creates under collision,
the resonance states which we study by the Hirota bilinear method.
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1. Introduction

An intimate similarity between black hole physics and hydrodynamics of supersonic
acoustic flows, was first noticed by Unruh.1 In an attempt to better understand
quantum gravity, it has then been applied to investigating Hawking radiation
and other phenomena.2 Recently, by a similar approach, quantum of effects re-
lated to event horizon and ergoregion have been simulated, but in a superfluid,
which contrasts with the usual liquids that allow non-dissipative motion of the
flow.3 In this case, a “superluminally” moving soliton-like inhomogeneity of the
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order parameter plays the role of black-holes-like quasi-equilibrium state, exhibit-
ing an event horizon. From another site, Madelung showed in 1926 that the linear
Schrödinger equation of quantum mechanics acquires a fluid mechanical form, with
an addition to pressure of the so-called “quantum potential”.4 It turns out that
the Madelung fluid representation has a meaning beyond the quantum mechanical
probability flow, applying to nonlinear modifications of the Schrödinger equation,
and generically appearing in a wide range of physical problems. Thus, from a phe-
nomenological approach to the superfluidity of an almost ideal Bose gas, based on
the Ginzburg–Gross–Pitaevskiy equation with cubic nonlinearity,5 ρ = |ψ|2 means
particle number density in the condensate state, while the phase gradient is propor-
tional to the velocity of superfluid motion vs = ∇ argψ. In one space dimension,
this model is known as the Nonlinear Schrödinger equation (NLS), possesses inte-
grable structure and attracted much attention particularly from nonlinear optics,
describing solitons propagation in optical fibers.6 It is instructive to consider how
the black-hole-like phenomena might be generalized to the Madelung fluid, thereby
to the appropriate nonlinear Schrödinger type equation. Very recently an implica-
tion appeared that indeed, it can be realized at least in 1 + 1 dimensions, where
black holes of constant curvature space–time have been related to the soliton-like
solutions, for dissipative version of NLS in the Reaction–Diffusion (RD) form.7,8

These solutions called dissipatons, characterize completely black hole’s horizon, the
Hawking temperature and the causal structure. Furthermore, described in terms of
elastic scattering of dissipatons, the collision of identical black holes exemplify a
novel character creating a metastable state of specific lifetimes.8 However, the un-
bounded dissipaton solution characteristics entail vague analytical meaning, which
is why it is desirable to find a similar representation of black holes, but in terms of
regular envelope solitons.

Here we show a black-hole-like phenomena, arisen from a problem of NLS soli-
ton, subjected with the influence of quantum potential with strength bounded from
below. This problem naturally generalizes a previous older problem considered by
Bohm,9 where a quantum mechanical particle is represented as the classical one,
moving under the action of a classical potential force which also includes a con-
tribution from the quantum one. If, instead of classical particle, we consider the
NLS soliton, subjected with quantum potential’s influence of intensity s, it could
represent the stochastically quantized soliton. We find that such a problem is ex-
actly solvable, and depending on s, reducible to the usual NLS (s < 1), or to the
Reaction–Diffusion system (s > 1). When s > 1 by the Madelung fluid represen-
tation, we obtain a so-called acoustic metric of Jackiw–Teitelboim gravity, with
simple interpretation of black hole’s event horizon. Moreover, to any envelope soli-
ton of our modified NLS, we relate some dissipaton solution of RD. Moving with
a velocity of bounded above strength, this soliton describes a black hole with rich
resonance scattering phenomenology, examined by the Hirota bilinear method. To
analyze the causal picture, we construct an anti-de Sitter (AdS) representation of
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the model, which is similar to Kruskal–Szekeres coordinates, and relate the black
hole to an AdS topological soliton.

2. Solitons in Quantum Potential

We begin with a problem of the NLS soliton subjected with the influence of the
so-called “quantum potential” and described by the equation

i∂tψ + ∂2
xψ +

Λ
4
|ψ|2ψ = s

∂2
x|ψ|
|ψ| ψ , (2.1)

where the term

UQ(x) ≡ ∂2
x|ψ|
|ψ| , (2.2)

on the R.H.S. represents contribution from the quantum potential. Even though
Eq. (2.2) includes the space derivatives and instead of nonlinear quantum mechanics
we are dealing rather with nonlinear dynamics, we preserve the historical name
“quantum potential”. This potential was introduced by L. de Broglie10 and has been
explored by D. Bohm9 to make a hidden-variable theory in quantum mechanics. It
is responsible for producing the quantum behavior, so that all quantum features are
related to its special properties. Recently, it appears in the stochastic mechanics
as the source of non-classical diffusion.11 Relations of such a non-classical motion
with the internal spin motion and the zitterbewegung are considered in a series of
papers.12

Potential UQ is invariant under rescaling transformations, ψ(x, t) → λψ(x, t),
with complex constant λ ∈ C, and hence does not depend on the strength of the
wave, associated with a soliton, but depends only on soliton’s form. Therefore, its
effect could be large even for the well-separated and far enough solitons. This type
of homogeneity property is the reason why quantum potential appears in attempts
to nonlinear extensions of quantum mechanics25: a) in a stochastic quantization,
allowing for the diffusion coefficient to differ ~/2m, as a result of the difference in the
Planck constant13 or the inertial mass,14 b) in corrections from quantum gravity.15

Auberson and Sabatier16 showed that, depending of quantum potential’s intensity,
the linear Schrödinger equation linearizable in form of the Schrödinger equation or
as the pair of time reversed diffusion equations. Both cases do not admit soliton
solutions. However, below we find that for self-consistent potential U = −Λ

4 |ψ|2 in
Eq. (2.1), the model has soliton solutions with a rich resonance dynamics.

Decomposing the wave function

ψ = eR−iS , ψ̄ = eR+iS , (2.3)

in terms of two real functions R and S, we have the system of equations

∂tS + (1− s)[∂2
xR + (∂xR)2]− (∂xS)2 +

Λ
4

e2R = 0 , (2.4a)

∂tR− ∂2
xS − 2∂xR∂xS = 0 , (2.4b)
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representable as the so-called Madelung fluid. In terms of density function ρ =
|ψ|2 = e2R, Eq. (2.4b) becomes the continuity equation form

∂tρ + ∂x(ρV ) = 0 , (2.5)

where we introduced a velocity field V (x, t) = −2∂xS. On the other hand, Eq. (2.4a)
has a form of Hamilton–Jacobi equation

−∂tS + (∂xS)2 + U + (s− 1)UQ = 0 , (2.6)

with nonlinear potential U = −Λ
4 e2R = −Λ

4 ρ, and the quantum potential (2.2).
Taking the gradient of Eq. (2.6) we obtain the hydrodynamic equation

∂tV + V ∂xV + 2∂x[U + (s− 1)UQ] = 0 . (2.7)

Then, a particular particle acceleration given by the total derivative of V would
obey the Newton’s equation of motion

1
2

dV

dt
= − ∂

∂x
[U + (s− 1)UQ] . (2.8)

This relation explains why UQ is called quantum potential. In quantum mechanics
UQ ∼ ~2 and its contribution vanishes in the classical limit, when ~ → 0. Similar
interpretation can be given in nonlinear dynamics, for the stationary wave’s self-
focusing in the cubic medium, where two forces on the R.H.S. of Eq. (2.8) determine
behavior of the eikonal (wave front): a force connected with nonlinear refraction and
the diffraction force from quantum potential.6

3. Madelung Fluid and the Reaction Diffusion System

Since quantum potential UQ is positive definite, its contribution to equation of
motion (2.8) changes the sign at critical value s = 1. Therefore, we treat values of
s > 1 and s < 1 separately. First we consider the case s < 1. Rescaling time and
phase of the wave function (2.3)

t = (1 − s)−
1
2 t̃ , S(x, t) = (1− s)

1
2 S̃(x, t̃) , (3.1)

instead of system (2.4) we get

∂t̃S̃ + [∂2
xR + (∂xR)2]− (∂xS̃)2 +

Λ
4(1− s)

e2R = 0 , (3.2a)

∂t̃R− ∂2
xS̃ − 2∂xR∂xS̃ = 0 . (3.2b)

In terms of a new complex function ψ̃ = eR−iS̃ , the system reverts to the usual
NLS equation

i∂t̃ψ̃ + ∂2
xψ̃ +

Λ
4(1− s)

|ψ̃|2ψ̃ = 0 , (3.3)

but with rescaled coupling constant Λ̃ = Λ/(1 − s). For Λ < 0, NLS Eq. (3.3),
descriptive of the repulsive near-ideal Bose gas and the defocusing optical media,
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admits soliton solutions (dark soliton) only when ψ̃ is a nonvanishing function at the
space and time infinities. This asymptotic form of the wave function corresponds
to the Bose gas condensate state. It is an exact, homogeneous in space solution of
equations of motion (3.3), acquiring the form

ψ =
(

4ρ0(1 − s)
−Λ

)1/2

e−iρ0(1−s)t ,

for original problem (2.1). The last solution implies that with growth of quantum
potential’s intensity s, particle’s number density in the condensate state decreases as
|ψ|2 = 4ρ0(1−s)/(−Λ), that satisfies our intuitive idea of the decoherence’s increas-
ing. When s = 1, the effective density of the condensate state vanishes and dark
solitons disappear from the spectrum. Consequently, quantum potential’s contribu-
tion completely disappears from the system (2.5), (2.6), corresponding now to the
semiclassical limit for NLS.27

But situation changes drastically if s > 1. Then, rescaling time and phase of the
wave function (2.3)

t = (s− 1)−
1
2 t̃ , S(x, t) = (s− 1)

1
2 S̃(x, t̃) , (3.4)

we get the system

∂t̃S̃ − [∂2
xR + (∂xR)2]− (∂xS̃)2 +

Λ
4(s− 1)

e2R = 0 , (3.5a)

∂t̃R− ∂2
xS̃ − 2∂xR∂xS̃ = 0 . (3.5b)

However, in contrast to the previous case (3.2), this system cannot be simplified in
terms of one complex function ψ̃. On the other hand, if we introduce two real func-
tions (in what follows we skip the tilde sign), e+ = exp(R+S), −e− = exp(R − S),
such that

−e+e− = e2R = |ψ|2 , S =
1
2

ln
e+

−e−
=

1
2i

ln
ψ̄

ψ
, (3.6)

then we obtain the Reaction–Diffusion (RD) system

−∂te
+ + ∂2

xe
+ +

Λ
4

e+e−e+ = 0 , (3.7a)

+∂te
− + ∂2

xe
− +

Λ
4

e+e−e− = 0 . (3.7b)

It is worthwhile to note that unusual negative value for diffusion coefficient in the
second equation (3.7b) is crucial for the existence of Hamiltonian structure and
integrability of the model. The system (3.7) is time reversible t → −t, e± → e∓,
and invariant under the global SO(1, 1) transformations, e± → e±αe±. For Λ < 0,
it admits solution

e± = ±
(

8
−Λ

)1/2

ke±[( 1
4v

2+k2)t− 1
2 vx] cosh−1[k(x− vt− x0)] , (3.8)
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with exponentially growing and decaying in time components, but with perfect
solitonic shape for O(1, 1) scalar product

−e+e− = |ψ|2 =
8
−Λ

k2 cosh−2[k(x− vt− x0)] . (3.9)

By analogy with dissipative structures in the pattern formation theory we called this
dissipative soliton solution as dissipaton.7 Using (3.6) and (3.8) we find one-soliton
solution of Eq. (2.1)

ψ =
(

8
−Λ

)1/2

k
e−i[(

1
4v

2+k2)t− 1
2 vx]

cosh k(x− vt)
, (3.10)

where the value s = 2 is fixed. For this particular value the rescaling factors in
Eq. (3.4) become unity, and Eq. (2.1) acquires the canonical form

i∂tψ + ∂2
xψ +

Λ
4
|ψ|2ψ = 2

∂2
x|ψ|
|ψ| ψ , (3.11)

which we call the resonance Nonlinear Schrödinger equation (RNLS). As we show
in Sec. 5, dispersive part of the energy density for this equation is sign indefinite
and allows creation of soliton resonances. We recall that under fixed sign of the
nonlinearity (in optical fibers the nonlinearity coefficient never changes its sign),
say Λ < 0, the focusing and defocusing NLS has strictly negative and positive
definite dispersion correspondingly. Moreover, the relative sign between dispersion
and nonlinearity is crucial for the existence of bright and dark solitons respectively.
Now, along with focusing and defocusing NLS, Eq. (3.11) can be considered as the
third integrable version of NLS, mixing both cases.

4. Geometrical and Gravitational Interpretation

Dissipatons, relating to black hole solutions of the Jackiw–Teitelboim gravity8

provide interesting tool to study nonperturbative sector of the general relativity.
Defining two-dimensional metric tensor in terms of Einstein–Cartan zweibein fields

gµν = eaµe
b
νηab =

1
2
(e+
µ e−ν + e+

ν e−µ ) , (4.1)

where e±µ = e0
µ ± e1

µ = (e±0 , e±1 ), ηab = diag(−1, 1), one can formulate the grav-
ity model as the noncompact BF gauge field theory with SO(2, 1) Poincaré gauge
group.17 We fix the gauge freedom by conditions

e±0 = ± ∂

∂x
e± , e±1 ≡ e± , (4.2)

such that

g00 = −∂e+

∂x

∂e−

∂x
, g11 = e+e− , g01 =

1
2

(
∂e+

∂x
e− − e+ ∂e−

∂x

)
, (4.3)
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implying identification x0 ≡ t, x1 ≡ x. It follows that when e± satisfy Eqs. (3.7), this
metric describes two-dimensional pseudo-Riemannian space–time with a constant
curvature Λ (“cosmological term”):

R = gµνRµν = Λ . (4.4)

This, low-dimensional (“lineal”) gravity model is known as the Jackiw–Teitelboim
model18 though it was proposed before in Ref. 19. It turns out that the model de-
scribes also S-wave sector of extremal D = 4 supersymmetric black hole in dilaton’s
coupled gravity model.20 When curvature vanishes, Λ = 0, the nonlinear term in
Eq. (2.1) and the system (3.7) disappears. Then, the system (3.7) decouples into
a pair of linear heat equation and the time-reversal one, while (2.1) reduces to the
unusual modification of the linear Schrödinger equation:

i∂tψ + ∂2
xψ − 2

∂2
x|ψ|
|ψ| ψ = 0 , (4.5)

with sign indefinite dispersion. It is worth to note that the classical theories
corresponding to the usual quantum mechanical Schrödinger equation and to the
modified model (4.5) are equivalent, since the “quantum potential” is proportional
to ~2, and in the ~→ 0 limit both models lead to the same Hamilton–Jacobi equa-
tions. Furthermore, the model (4.5) is also relevant to the black hole solutions of
the CGHS string-inspired gravitational theory.21

Representation (4.3) allows us to establish a correspondence between geomet-
rical and physical characteristics of the model. In terms of ψ variable the metric
tensor (4.1) is given by

g00 = 2
(

∂|ψ|
∂x

)2

− ∂ψ̄

∂x

∂ψ

∂x
, g11 = −|ψ|2 , g01 =

i

2

(
∂ψ̄

∂x
ψ − ψ̄

∂ψ

∂x

)
, (4.6)

so that g00 component has meaning of the dispersive part of energy density, while g11

and g01, of the mass and momentum densities correspondingly. For one-dissipaton
solution (3.8) or one-soliton solution (3.10) the mass, momentum and energy con-
served quantities

M = −
∫ ∞
−∞

e+e− dx =
∫ ∞
−∞
|ψ|2 dx , (4.7a)

P = −
∫ ∞
−∞

(e+∂xe
− − ∂xe

+e−)dx = i

∫ ∞
−∞

(∂xψ̄ψ − ψ̄∂xψ)dx , (4.7b)

E = 2
∫ ∞
−∞

[
∂xe

+∂xe
− − Λ

8
(e+e−)2

]
dx

= 2
∫ ∞
−∞

[
∂xψ̄∂xψ − 2∂x|ψ|∂x|ψ| −

Λ
8
|ψ|4

]
dx , (4.7c)
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become

M =
16
−Λ
|k| , P = Mv , E =

Mv2

2
+

Λ2

384
M3 . (4.8)

This means that one dissipaton/soliton (3.8)/(3.10) can be interpreted as non-
relativistic quasi-particle of non-negative mass M and momentum P , with positive
rest energy E0 = E(v = 0) = Λ2

384M3. As we show in the next section, this energy
allows decay of the soliton at rest.

5. Resonance Dispersion and Black Holes

We are now in a position to show that an interaction of the above introduced quasi-
particles leads to creation and annihilation processes, forming resonance states.
Existence of these states relates to the sign-indefinite form of dispersive part of
energy density (4.7c), written in terms of variables (3.6)

ε0 ≡ 2(∂xψ̄∂xψ − 2∂x|ψ|∂x|ψ|) = 2[(∂xS)2 − (∂xR)2]e2R . (5.1)

For comparison we recall that in the usual NLS case, when s = 0, one has positive-
definite dispersion energy

ε0 ≡ 2∂xψ̄∂xψ = 2[(∂xS)2 + (∂xR)2]e2R . (5.2)

The space–time points where function ε0 in Eq. (5.1) changes the sign are solutions
of equations

(∂xS)2 − (∂xR)2 = (∂xS − ∂xR)(∂xS + ∂xR) = 0 , (5.3)

or ∂xS = ±∂xR. Comparing Eq. (5.1) with Eq. (4.6), we find that dispersion en-
ergy density has geometrical meaning of the metric tensor component ε0 = −2g00.
Therefore, conditions (5.3) are equivalent to the existence of the event horizon
at the space–time points (xH , tH), where g00 change the sign. This relates reso-
nance dispersion of the RNLS (3.11) with the existence of the event horizon in
two-dimensional space–time, indicating on nontrivial causal structure and the cor-
responding black hole type phenomena. In fact, if we calculate the metric (4.6) for
one-soliton solution (3.10),

ds2 =
8
−Λ

[
(k2 tanh2 k(x− vt)− 1

4
v2)(dt)2 − (dx)2 − vdx dt

]
|ψ|2 , (5.4)

then for |v| ≤ 2|k| ≡ |vmax|, it shows a horizon singularity at

tanhk(x− vt) = ± v

2k
. (5.5)

Thus, a black hole soliton cannot move faster than the maximal value of the ve-
locity |vmax| = 2|k| and event horizons are located at the distances ± tanh−1 |v/2k|
from the soliton’s center. The corresponding metric can be transformed to the
Schwarzschild type form and shows the causal structure in terms of Kruskal–
Szekeres coordinates.8
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Comparing (5.1) with (4.7c) and (4.8) one can see that quantum potential’s
contribution to the total energy is negative. For one-soliton solution (3.10) we have
−2∂xS = v and only the first term in (5.1) contributes to the kinetic energy, while
quantum potential contributes only to the rest energy E0. Due to the positive sign
of nonlinearity (Λ < 0), the resulting rest energy remains positive. This is the
reason why the resonance behavior could occur for our model. Indeed, decay of a
soliton at rest on the pair of solitons with positive energies is allowed only if the
rest energy is positive. Since the rest energy satisfies inequality

E0 =
Λ2

384
M3 =

Λ2

384
(M1 + M2)3 >

Λ2

384
(M3

1 + M3
2 ) = E0(1) + E0(2) , (5.6)

such that ∆E0 = E0 − (E0(1) + E0(2)) > 0, it allows creation of two solitons. Then,
the first three conservation laws for the decaying process are

M = M1 + M2 , P = P1 + P2 , E = E1 + E2 , (5.7)

where we have to use asymptotic form (4.8) for separated solitons. From the
mass conservation law it follows that defect of the mass always vanishes, ∆M =
M − (M1 + M2) = 0. Further, from conservation of momentum we find that
velocity of decaying soliton coincides with the one for the center-of-mass v =
(M1v1 + M2v2)/(M1 + M2). Substituting to the energy conservation law we ob-
tain the following constraint on velocities of the decay’s product

|v1 − v2| = −
Λ
8

(M1 + M2) . (5.8)

In Sec. 7 we apply this constraint to the soliton dynamics and find that for two-
soliton solution it corresponds to the resonance creation condition.

6. Hydrodynamical Interpretation

The Madelung fluid representation gives simple hydrodynamical explanation for
the existence of resonance states and the event horizon. To proceed, we introduce
the fluid density ρ ≡ e2R = |ψ|2, according to Eq. (3.6). Since an envelope soliton is
characterized by two motions, the center-of-mass motion and internal oscillations in
the envelope, we define the corresponding local velocities. Velocity V ≡ −2∂xS (see
Eq. (2.5)), of the center-of-mass motion and velocity VQ ≡ ∂xρ/ρ, of an internal
motion, referred to the center-of-mass frame. The last one is similar to the “quantum
velocity” describing stochastic diffusion11 or the zitterbewegung motion,12 generated
by quantum potential. If for the standard NLS (s = 0) the dispersive energy density
(5.2) is just the sum of kinetic energies of these two motions

ε0 =
(

ρV 2

2
+

ρV 2
Q

2

)
, (6.1)

then, in contrast, for RNLS (3.8) the density (5.1) is given by their difference

ε0 =
(

ρV 2

2
−

ρV 2
Q

2

)
, (6.2)
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that is the origin of black hole type behavior. In our hydrodynamical representation,
metric tensor (4.6) acquires the form

g00 =
1
4
ρ(V 2

Q − V 2) , g11 = −ρ , g01 =
1
2
ρV . (6.3)

It is similar to the ADM splits of a (1 + 1)-dimensional Lorentzian space–time cor-
responding to the so-called acoustic metric, derived by Unruh1 for the sound waves
in a fluid.2 Hence, the event horizon defined by g00 = 0 appears at a point where
velocities of the center-of-mass and the internal motion are equal V = ±VQ. For
one-soliton solution (3.10), velocity of the center-of-mass is a constant, coinciding
with the soliton propagation velocity V = v, while the “quantum” velocity is the
bounded function VQ = −2k tanh k(x−vt), such that |VQ| ≤ 2|k|. As a consequence,
compensation of velocities and vanishing of g00 is possible only in this region. Thus,
velocity compensation condition V = ±VQ becomes equivalent to soliton’s event
horizon condition (5.5).

To derive the black hole we first rewrite metric (6.3) in the moving frame (ξ, t) =
(x− vt, t) with a constant velocity v. Then, in terms of new “shifted” local velocity
W (ξ, t) = 2v − V (ξ, t) it acquires convenient form

g̃00 =
1
4
ρ(V 2

Q −W 2) , g̃11 = −ρ , g̃01 = −1
2
ρW . (6.4)

For one-soliton solution (3.10), when W = v, this metric becomes of the form
(6.3) (with v instead of V ), but with stationary space–time geometry ρ = ρ(ξ),
VQ = VQ(ξ).

Generically, the metric (6.4) contains off-diagonal terms. The time synchroniza-
tion in this space–time is possible if function 2W/(V 2

Q−W 2) is integrable. Then we
define new time coordinate dτ = dt− 2W/(V 2

Q −W 2)dξ and obtain Schwarzschild
type black hole metric

ds2 = ρ

[
1
4
(V 2
Q −W 2)(dτ)2 −

V 2
Q

V 2
Q −W 2

(dξ)2

]
. (6.5)

From this metric, following the same arguments as for black holes, the Hawking
temperature can be derived. In particular, for one-soliton solution all calculations
can be done in explicit form. Synchronization of the stationary metric is given by
the above transformation of time, integrated as

τ = f(ξ, t) = t +
v

2k3(1 − γ2)

[
−kξ +

1
2|γ| ln

∣∣∣∣ |γ|+ tanh kξ

|γ| − tanh kξ

∣∣∣∣] ,

where |γ| ≡ |v/2k| < 1. Then, the Hawking temperature is TH = 1
2πk2(1− γ2). For

|v| = 2|k| it vanishes similarly to the extremal black hole.8

7. Resonance Interaction of Solitons

Our task is now to apply the Hirota bilinear method and construct two soliton/
dissipaton solution of (3.8)/(3.7). It is straightforward to show that RD system
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(3.7) admits the following bilinear representation:

(±Dt −D2
x)(G

± ◦ F ) = 0 , D2
x(F ◦ F ) = −2G+G− , (7.1)

where three new real functions G± and F are defined by e± = (−8/Λ)1/2G±/F ,
with the corresponding form for the product e+e− = (8/Λ)∂2

x(log F ).
The following solution of system (7.1)

G± = ±eη
±
1 , F = 1 + eη

+
1 +η−1 +φ1,1 , eφ1,1 = (k+

1 + k−1 )−2 , (7.2)

where η±1 ≡ k±1 x± (k±1 )2t + η
±(0)
1 , and k±1 , η

±(0)
1 , are arbitrary constants, gives the

one-dissipaton of Eqs. (3.7). In terms of redefined parameters, k ≡ (k+
1 +k−1 )/2, v ≡

−(k+
1 −k−1 ) it acquires the form (3.8). Depending on the boundary conditions, three

types of dissipaton solutions exist. We consider one-dissipaton boundary conditions
and compare them with the horizon condition (5.5). In the space of parameters
(v, k) there exist critical value vc = 2k, such that when v < vc, for solution (7.2)
one has e± → 0 at infinities. So, the vanishing boundary conditions for a dissipaton
are equivalent to the black hole (BH) existence. We call the corresponding heavy
quasi-particle as the BH dissipaton. At the critical value v = 2k the solution is a
kink steady state in the moving frame e± = ±ke±kξ0(1 ∓ tanh kξ), with constant
asymptotics e± → ±2ke±kξ0 for x → ∓∞ and e± → ±0 for x → ±∞. In the last
case we have the extremal black hole or the EBH dissipaton. In the over-critical
case v > vc, e± → ±∞ for x → ∓∞ and e± → ±0 for x → ±∞, no black hole
exists and we have very fast and light quasi-particles called the LD.

For two-dissipaton solution we have

G± = ±
[
eη
±
1 + eη

±
2 +

(k±1 − k±2 )2

(k±∓21 k+−
11 )2

eη
+
1 +η−1 +η±2 +

(k±1 − k±2 )2

(k±∓12 k+−
22 )2

eη
+
2 +η−2 +η±1

]
, (7.3a)

F = 1 +
eη

+
1 +η−1

(k+−
11 )2

+
eη

+
1 +η−2

(k+−
12 )2

+
eη

+
2 +η−1

(k+−
21 )2

+
eη

+
2 +η−2

(k+−
22 )2

+
(k+

1 − k+
2 )2(k−1 − k−2 )2

(k+−
12 k+−

21 k+−
11 k+−

22 )2
eη

+
1 +η−1 +η+

2 +η−2 , (7.3b)

where kabij ≡ kai + kbj , η±i ≡ k±i x ± (k±i )2t + η±(0). The degenerate case of this
solution, when k+

1 = k−1 ≡ p1, k+
2 = k−2 ≡ p2, can be simplified in the form

e± = ±
(

8
−Λ

)1/2

p+p−
p1 cosh θ2e

±p2
1t + p2 cosh θ1e

±p2
2t

p2
− cosh θ+ + p2

+ cosh θ− + 4p1p2 cosh(p+p−t)
, (7.4)

where p± ≡ p1±p2, θ± ≡ θ1±θ2, θi ≡ pi(x−x0i), (i = 1, 2). It describes a collision of
two dissipatons with identical amplitudes p+/2, moving in opposite directions with
equal velocities |v| = |p−|, and creating the resonance bound state. The lifetime of
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this state,8 ∆T ≈ 2p2d/p+p−, linearly depends on the relative distance d, where
x01 = 0, x02 = d.

In a more general case, treatable analytically, when k±i > 0, (i = 1, 2), and
k+

1 − k−1 > 0, k+
2 − k−2 > 0, k+

1 − k−2 > 0, k+
2 − k−1 < 0, solution (7.3) describes

collision of two dissipatons with amplitudes k+−
12 /2 and k+−

21 /2 and velocities v12 =
−(k+

1 − k−2 ) and v21 = −(k+
2 − k−1 ), correspondingly. Depending on the relative

position’s shift, also in this general case the resonance states can be created.
As a simplest example we consider conditions for decay of BH dissipaton at rest

(v = 0) on two dissipatons (3.8) with parameters (k1, v1) and (k2, v2). From the
mass, momentum and energy conservation laws (5.6) and condition (5.7) we obtain
the following relations v2

1 = 4k2
2 , v2

2 = 4k2
1 . It is obvious that two possibilities exist:

(a) |v1| = |v2|. In this case |k1| = |k2|, and both dissipatons have equal masses
M1 = M2 = M/2 and velocities, satisfying the critical values v2

i = 4k2
i , (i = 1, 2),

clearly corresponding to two EBH.
(b) |v1| > |v2| (without lose of generality). In this case v2

1 > 4k2
1 and v2

2 < 4k2
2,

so that the initial BH decays on one BH and one LD dissipaton.
The process of creation of resonant BH is illustrated in Fig. 1. Figure 2 shows

interaction of two BH dissipatons by exchange of LD. A more complicated inter-
action, creating two resonant BHs (the Feynman diagram with four vertices) is
shown in Fig. 3. Detailed description of various interactions simulated by MATH-
EMATICA would be published elsewhere. We would like to just emphasize here
that the resonance of dissipatons/solitons occurs when coefficient in the last term
of Eq. (7.3b) vanishes or become infinite, similarly to the resonance equation con-
sidered in Ref. 22. As easy to check by direct substitution, this condition is satisfied
under the conservation laws (5.6) constrained with Eq. (5.8).

8. Black Holes as Topological Solitons

The gauge fixing condition (4.2) defines classical SO(2, 1)/SO(1, 1) Heisenberg
model on the anti-de Sitter space (Λ < 0),

∂0s = s ∧ ∂2
xs , (8.1)

where e±µ play the role of local coordinates in the tangent plane ∂µs =
(−Λ

8 )1/2(e+
µn− − e−µn+), so that the metric tensor is

gµν =
(

2
−Λ

)
(∂µs∂νs) (8.2)

and s2 = −(S1)2 +(S2)2−(S3)3 = −1. Below we establish gauge equivalence of RD
system (3.7) to Eq. (8.1), allowing us to construct an exact solution for the last one.
The solution provides simple geometrical visualization of the event horizon position
and allow us to interpret the black hole as a topological soliton. Furthermore, under
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Fig. 1. (a) 3D plot of two dissipatons resonance-type collision for k+
1 = 2, k−1 = 1, k+

2 = 0.001,
k−2 = 0.001 in the (x, t)-plane. (b) Contour plot of two dissipatons collision with BH resonance in
the (x, t)-plane.

collision they show the similar resonance properties as dissipatons of (3.7). In the
matrix representation for S ∈ SO(2, 1) we have

S = i

(
S3 S−

S+ −S3

)
= (s, τ) = gτ3g

−1 , (8.3)
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Fig. 2. Contour plot of two BH dissipatons exchange-type collision for k+
1 = 2, k−1 = 1, k+

2 =
−1.7, k−2 = −1.9 and d = 50 in the (x, t)-plane.

where S± = S1±S2, S2 = −I, detS = 1, and Eq. (8.1) acquires the standard form

∂tS =
1
2i

[S, ∂2
xS] , (8.4)

with the Lax pair

JHM1 =
i

4
λS , JHM0 =

i

8
λ2S +

λ

4
S∂xS . (8.5)

This model is gauge equivalent (in the sense of integrable models) to the resonance
NLS (3.10) and RD (3.7). Although the Lax pair for the first one has been derived,23

it has quite complicated structure, while for the second one it is just of a real
Zakharov–Shabat form

JRD1 =

 1
4λ q−

q+ − 1
4λ

 , JRD0 =

 1
8λ2 − q+q− −(∂x − 1

2λ)q−

(∂x + 1
2λ)q+ − 1

8λ2 + q+q−

 , (8.6)

for two independent functions q± ≡ (−Λ
8 )1/2e±. The gauge equivalence is imple-

mented by non-Abelian transformation JHMµ = gJRDµ g−1 − ∂µgg−1, (µ = 0, 1),
where matrix g(x, t) is a solution of the linear problem ∂µg = gJRDµ (λ = 0). To
construct the “magnetic” analog of dissipaton (3.9) we solve this system first. The
result is

g(x, t) =

 tanh z − γ 1
cosh z e

γz−k2(1−γ2)t

− 1
cosh z e

−γz+k2(1−γ2)t tanh z + γ

 , (8.7)
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Fig. 3. (a) Contour plot of two BH dissipatons four vertex-type collision for k+
1 = 2, k−1 = 1,

k+
2 = 1, k−2 = 0.3 and d = 40 in the (x, t)-plane. (b) Contour plot of creation of two resonant BH

dissipatons for k+
1 = 2, k−1 = 1, k+

2 = 1, k−2 = 2 and d = 15.
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where z ≡ k(x−vt), γ ≡ v/2k, det g = 1−γ2. Then, from Eq. (8.3) we find solution
of Eq. (8.4),

S3 = −1 +
2

1− γ2
cosh−2 z , (8.8a)

S− =
2

1− γ2
cosh−1 z(tanh z − γ)eγz−k

2(1−γ2)t , (8.8b)

S+ =
2

1− γ2
cosh−1 z(tanh z + γ)e−γz+k

2(1−γ2)t , (8.8c)

describing magnetic (curved) analog of dissipaton (3.8). Indeed, in moving frame
with velocity v, z = const., and the S3 component is time-independent, while S−

and S+ are decaying and growing with time. As well as for dissipaton (3.8), prop-
erties of solution (8.8) essentially depend on the velocity v. We have the following
cases.

(a) γ2 < 1, or |v| < 2|k|, then −1 ≤ S3 ≤ 1+γ2

1−γ2 . At any fixed time t, components
S+ and S− vanish when z → ±∞, while S3 → −1. Due to the boundary value
s = (0, 0,−1), when z → ±∞, the real line R = {z} is compactified. Since the
hyperboloid s2 = −(S1)2 + (S2)2 − (S3)2 = −1 has topology of cylinder R × S1,
solution (8.8) describes S1 → S1 mapping of degree one. Therefore, solution (8.8)
is a topological soliton, traveling with a constant velocity v. When z = zH , so that
tanh z = ±γ, one of the components S+ or S− vanishes and in the metric (8.2)
component g00 = 0. Hence, we have the event horizon at the same position as
for dissipaton in Eq. (5.5) (see Fig. 4). Since any topological soliton configuration
crosses one of the lines S+ = 0 and S− = 0 at least once, intersection points
correspond to the event horizon. The last result relates the black hole solution with
topological soliton on the hyperboloid.

(b) γ2 > 1, or |v| > 2|k|. In this case − 1+γ2

1−γ2 ≤ S3 ≤ −1. At z → ±∞ one
of the components S+ or S− grows exponentially. Moreover, asymptotics at +∞
and −∞ are orthogonal. Therefore, solution (8.8) has trivial winding. It can be
considered as the turning traveling wave, which never cross the asymptotic lines at
finite distance. So, in this case event horizon and black holes do not exist.

From the above analysis one can see that the existence of the event horizon
closely relates to topologically nontrivial solutions of model (8.1). If we calculate
metric (8.2) for one-soliton solution (8.8)

ds2 =
8
−Λ

(k2 cosh−2 z)[(k2(tanh2 z − γ2))(dt)2 − k−2(dz)2 − 2γ dz dt] , (8.9)

in the synchronized frame (z, T ), defined by (see Eq. (6.6))

T = f(z, t) = t +
γ

k2(1 − γ2)

[
−z +

1
2|γ| ln

∣∣∣∣ |γ|+ tanh z

|γ| − tanh z

∣∣∣∣] ,
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Fig. 4. Parametric plot of topological soliton projection on (S1, S2) plane for k = 1, γ = 0.5.
Positions of the BH event horizon correspond to intersection points with S+ = 0 and S− = 0
lines, while asymptotics on ±∞ to the beginning of coordinates (0, 0).

it becomes of the black hole form

ds2 =
8
−Λ

(k2 cosh−2 z)
[
(k2(tanh2 z − γ2))(dT )2 − tanh2 z

k2(tanh2−γ2)
(dz)2

]
(8.10)

and shows a horizon singularity at tanh z = ±γ, only if |v| ≤ 2|k| ≡ |vmax|. Con-
sequently, the topological soliton cannot move faster than the maximal value of
velocity |vmax| = 2|k|. The event horizon singularity is removable in the Kruskal–
Szekeres (KS) coordinates, defined in our case as

v = er
2
H(R+T ) , u = −er

2
H(R−T ) , (r > rH) ;

v = er
2
H(R+T ) , u = +er

2
H(R−T ) , (r > rH) ,

where R = 2−1r−2
H ln|1−r2

H/r2|, r = |k| cosh−1 z, r2
H = k2(1−γ2). Then, the metric

has regular form of the anti-de Sitter space8,24

ds2 =
8
−Λ

du dv

(1− uv)2
,

where the black hole event horizon corresponds to the diagonal lines u = 0 and
v = 0. These diagonal lines are equivalent to the above conditions for the spin
vector, S+ = 0 and S− = 0. Thus, soliton (8.8) provides a simple geometrical
visualization of event horizon’s position, the same as in the KS coordinates, and
allow treating of black holes as the topological solitons. It also exhibits a global
meaning of black holes in the JT gravity. Since dissipatons of (3.7) create the
resonance states under collisions, we expect that similar states would also appear
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for solitons collision in Eq. (8.1). Due to the equivalence of our coordinates with KS
ones for asymptotically isolated soliton, they can be useful tool in construction of
causal picture for black holes collision. This question is under further investigation.

9. Conclusions

The black hole picture with its resonance interaction as described above can be
applied to physical models of slowly varying quasi-monochromatic wave, in nonlin-
ear media with the sign of indefinite dispersion. The (1 + 1)-dimensional case can
be realized particularly from nonlinear optics. The great variety of optical solitons
is due to the various properties of media involved, including nonlinearity, material
and geometric dispersion, passive or active properties, etc. The crucial role in soli-
ton properties plays the group-velocity dispersion of the optical fibers, depending
not only on the glass material involved, but also on the fiber waveguide property.
According to the sign of dispersion, there are two types of known NLS — defocus-
ing and focusing cases, that correspondingly admit “dark” and “bright” solitons.
Since the wave function is a complex quantity, the quadratic dispersion, in general,
consists of two parts: phase dispersion and absolute value dispersion. The former
corresponds to geometrical optics, while the latter is responsible for diffraction. But
for both focusing and defocusing cases, contributions from the phase and the abso-
lute value dispersions have the same sign (positive and negative correspondingly).
Here we have considered a nonlinear media with the sign of indefinite quadratic
dispersion, resulting in competition between opposite sign contributions from the
phase and the absolute value dispersion. However, in principle, another mechanism
could exist to change the sign of dispersion, for example by multiplication of dis-
persion with some function of space–time. In a very recent paper Clarke et al.28

consider a dispersion-decreasing fiber, being an efficient tool for compression of
optical pulses, and described it by NLS type equation with variable dispersion coef-
ficient. Simulation of a wave pulse passing a point, where the dispersion coefficient
changes its sign from focusing to defocusing, demonstrates that in the focusing re-
gion the pulse keeps a soliton-like shape until it is close to the zero-dispersion point.
However, after the passage of this point, depending on the pulse’s energy, it decays
into radiation or into a double-humped structure. Although this model is different
from the one that we consider here, the qualitative behavior of soliton solution is
quite similar. In both models dispersion changes the sign and the single soliton,
passing the point where it is happening, decays on the pair of pulses (solitons, in
our case). It indicates on interpretation of points where dispersion changes the sign
with event horizon and the relevance of black hole’s language for the corresponding
dispersion-managed type phenomena in nonlinear optics.

Finally, we note that application of quantum potential to planar system with
Chern–Simons vortex/soliton configuration, leads to a new phenomena such as
quantization of the potential strength s and the Chern–Simons coupling constant.26

In 1+1 dimensions,29 this model reduces to the problem of NLS soliton in quantum
potential, studied here.
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