Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4613
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Jyh Hao-
dc.contributor.authorPashaev, Oktay-
dc.date.accessioned2016-05-09T10:51:41Z
dc.date.available2016-05-09T10:51:41Z
dc.date.issued2001-06
dc.identifier.citationLee, J. H., and Pashaev, O. (2001). Self-dual vortices in Chern-Simons hydrodynamics. Theoretical and Mathematical Physics, 127(3), 779-788. doi:10.1023/A:1010451802189en_US
dc.identifier.issn0040-5779
dc.identifier.issn0040-5779-
dc.identifier.issn1573-9333-
dc.identifier.urihttp://doi.org/10.1023/A:1010451802189
dc.identifier.urihttp://hdl.handle.net/11147/4613
dc.description.abstractThe classical theory of a nonrelativistic charged particle interacting with a U(1) gauge field is reformulated as the Schrödinger wave equation modified by the de Broglie-Bohm nonlinear quantum potential. The model is gauge equivalent to the standard Schrödinger equation with the Planck constant ℏ for the deformed strength 1 - ℏ2 of the quantum potential and to the pair of diffusion-antidiffusion equations for the strength 1 + ℏ2. Specifying the gauge field as the Abelian Chern-Simons (CS) one in 2+1 dimensions interacting with the nonlinear Schrödinger (NLS) field (the Jackiw-Pi model), we represent the theory as a planar Madelung fluid, where the CS Gauss law has the simple physical meaning of creation of the local vorticity for the fluid flow. For the static flow when the velocity of the center-of-mass motion (the classical velocity) is equal to the quantum velocity (generated by the quantum potential velocity of the internal motion), the fluid admits an N-vortex solution. Applying a gauge transformation of the Auberson-Sabatier type to the phase of the vortex wave function, we show that deformation parameter ℏ, the CS coupling constant, and the quantum potential strength are quantized. We discuss reductions of the model to 1+1 dimensions leading to modified NLS and DNLS equations with resonance soliton interactions.en_US
dc.language.isoenen_US
dc.publisherPleiades Publishingen_US
dc.relation.ispartofTheoretical and Mathematical Physicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNonlinear wave equationen_US
dc.subjectN-vortex solutionen_US
dc.subjectSchrödinger equationen_US
dc.titleSelf-dual vortices in Chern-Simons hydrodynamicsen_US
dc.typeArticleen_US
dc.authoridTR57865en_US
dc.institutionauthorPashaev, Oktay-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume127en_US
dc.identifier.issue3en_US
dc.identifier.startpage779en_US
dc.identifier.endpage788en_US
dc.identifier.wosWOS:000170636700009en_US
dc.identifier.scopus2-s2.0-0035536327en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1023/A:1010451802189-
dc.relation.doi10.1023/A:1010451802189en_US
dc.coverage.doi10.1023/A:1010451802189en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
4613.pdfMakale138.08 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

17
checked on Nov 9, 2024

Page view(s)

248
checked on Nov 18, 2024

Download(s)

112
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.