Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/4613
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Jyh Hao | - |
dc.contributor.author | Pashaev, Oktay | - |
dc.date.accessioned | 2016-05-09T10:51:41Z | |
dc.date.available | 2016-05-09T10:51:41Z | |
dc.date.issued | 2001-06 | |
dc.identifier.citation | Lee, J. H., and Pashaev, O. (2001). Self-dual vortices in Chern-Simons hydrodynamics. Theoretical and Mathematical Physics, 127(3), 779-788. doi:10.1023/A:1010451802189 | en_US |
dc.identifier.issn | 0040-5779 | |
dc.identifier.issn | 0040-5779 | - |
dc.identifier.issn | 1573-9333 | - |
dc.identifier.uri | http://doi.org/10.1023/A:1010451802189 | |
dc.identifier.uri | http://hdl.handle.net/11147/4613 | |
dc.description.abstract | The classical theory of a nonrelativistic charged particle interacting with a U(1) gauge field is reformulated as the Schrödinger wave equation modified by the de Broglie-Bohm nonlinear quantum potential. The model is gauge equivalent to the standard Schrödinger equation with the Planck constant ℏ for the deformed strength 1 - ℏ2 of the quantum potential and to the pair of diffusion-antidiffusion equations for the strength 1 + ℏ2. Specifying the gauge field as the Abelian Chern-Simons (CS) one in 2+1 dimensions interacting with the nonlinear Schrödinger (NLS) field (the Jackiw-Pi model), we represent the theory as a planar Madelung fluid, where the CS Gauss law has the simple physical meaning of creation of the local vorticity for the fluid flow. For the static flow when the velocity of the center-of-mass motion (the classical velocity) is equal to the quantum velocity (generated by the quantum potential velocity of the internal motion), the fluid admits an N-vortex solution. Applying a gauge transformation of the Auberson-Sabatier type to the phase of the vortex wave function, we show that deformation parameter ℏ, the CS coupling constant, and the quantum potential strength are quantized. We discuss reductions of the model to 1+1 dimensions leading to modified NLS and DNLS equations with resonance soliton interactions. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pleiades Publishing | en_US |
dc.relation.ispartof | Theoretical and Mathematical Physics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Nonlinear wave equation | en_US |
dc.subject | N-vortex solution | en_US |
dc.subject | Schrödinger equation | en_US |
dc.title | Self-dual vortices in Chern-Simons hydrodynamics | en_US |
dc.type | Article | en_US |
dc.authorid | TR57865 | en_US |
dc.institutionauthor | Pashaev, Oktay | - |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 127 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 779 | en_US |
dc.identifier.endpage | 788 | en_US |
dc.identifier.wos | WOS:000170636700009 | en_US |
dc.identifier.scopus | 2-s2.0-0035536327 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1023/A:1010451802189 | - |
dc.relation.doi | 10.1023/A:1010451802189 | en_US |
dc.coverage.doi | 10.1023/A:1010451802189 | en_US |
dc.identifier.wosquality | Q3 | - |
dc.identifier.scopusquality | Q3 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
17
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
17
checked on Nov 9, 2024
Page view(s)
248
checked on Nov 18, 2024
Download(s)
112
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.