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SELF-DUAL VORTICES IN CHERN–SIMONS HYDRODYNAMICS

J. H. Lee1 and O. K. Pashaev2

The classical theory of a nonrelativistic charged particle interacting with a U(1) gauge field is reformu-

lated as the Schrödinger wave equation modified by the de Broglie–Bohm nonlinear quantum potential.

The model is gauge equivalent to the standard Schrödinger equation with the Planck constant � for the

deformed strength 1− �
2 of the quantum potential and to the pair of diffusion–antidiffusion equations for

the strength 1+ �
2. Specifying the gauge field as the Abelian Chern–Simons (CS) one in 2+1 dimensions

interacting with the nonlinear Schrödinger (NLS) field (the Jackiw–Pi model), we represent the theory as

a planar Madelung fluid, where the CS Gauss law has the simple physical meaning of creation of the local

vorticity for the fluid flow. For the static flow when the velocity of the center-of-mass motion (the classical

velocity) is equal to the quantum velocity (generated by the quantum potential velocity of the internal

motion), the fluid admits an N-vortex solution. Applying a gauge transformation of the Auberson–Sabatier

type to the phase of the vortex wave function, we show that deformation parameter �, the CS coupling

constant, and the quantum potential strength are quantized. We discuss reductions of the model to 1+1

dimensions leading to modified NLS and DNLS equations with resonance soliton interactions.

1. Introduction

The generalization of the Schrödinger equation by the “quantum potential” nonlinear term was consid-
ered in connection with a stochastic quantization problem [1] and corrections to quantum mechanics from
quantum gravity effects [2]. It also appears in the wave theory formulation of classical mechanics [3] and the
dispersionless limit of nonlinear wave dynamics [4]. Sabatier [5] showed that this extension preserves the
Lagrangian structure. Moreover, Auberson and Sabatier [6] found a transformation of the phase of the wave
function that linearizes the model and reduces it, depending on the strength of the coupling coefficient for
the quantum potential, to the Schrödinger equation with a rescaled potential or to a pair of time-reversed
diffusion equations. Because of this linearization, soliton solutions of this equation do not exist [5, 6].

We recently considered the nonlinear version of the Bohm formulation of quantum mechanics [7],
namely, the problem of the nonlinear Schrödinger (NLS) soliton under the influence of the quantum po-
tential [4, 8]. Applying a phase transformation of the Auberson–Sabatier type to this problem with an
overcritical strength of the quantum potential allowed reducing the problem to a pair of time-reversed
reaction-diffusion equations, representing an imaginary-time version of the real q-r NLS-type system [9]
(SL(2, R) reduction of the Zakharov–Shabat problem). Constructing a two-soliton solution, we found a
resonance character of their mutual interaction [4, 8].

In the present paper, we consider the influence of the quantum potential on the planar vortex in the
(2+1)-dimensional problem for the NLS equation interacting with the Chern–Simons (CS) gauge field.
Applying a transformation of the Auberson–Sabatier type to the phase of the wave function dramatically
changes the parameters of the vortex configurations. In the Madelung representation, we reformulate the
model as a rotational planar hydrodynamics. The self-dual limit, admitting N-vortex solutions, then has
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a simple physical interpretation as the condition for equality of the “classical velocity” (velocity of the
center-of-mass) and the “quantum” velocity (velocity of the motion in the center-of-mass frame associated
with the internal “spin motion” or zitterbewegung).

In Sec. 2, we reformulate the classical dynamics of a charged particle interacting with an Abelian
gauge field as an NLS-type wave equation. Properly deforming the strength of the quantum potential, we
recover the standard Schrödinger equation, where the deformation parameter plays the role of the Planck
constant. In Sec. 3, we specify the gauge field as an Abelian CS one interacting with the NLS equation
and derive the corresponding rotational Madelung-type hydrodynamics and its dispersionless limit and
deformations. In Sec. 4, we study the quantum velocity and its properties. For the static flow moving with
a velocity equal to the quantum velocity, we reduce the problem to the Liouville equation and describe the
corresponding vortex configurations. From the conditions for nonsingularity and single-valuedness, we find
the quantization condition for the coupling constants. In Sec. 5, we consider dimensional reduction to the
one-dimensional NLS equation and its modification by the quantum potential. In the conclusion, we briefly
discuss our results.

2. Nonlinear wave equation of classical dynamics

The classical dynamics of a charged nonrelativistic particle in the U(1) gauge field Aµ = (A0,A) with
the Hamilton function

H =
p2

2m
+

e

c
A0 + U

is described by the Hamilton–Jacobi equation

∂S

∂t
+H(∇S,A0,A, U) = 0 (2.1)

with the momentum

p = ∇S +
e

c
A.

Combining (2.1) with the Liouville equation ∂ρ/∂t+∇(ρV) = 0 for the density ρ of the integral invariant
in the gradient dynamic system

ẋ = V =
1
m
p =

1
m

(
∇S +

e

c
A

)
, (2.2)

we obtain the system of equations

∂S

∂t
+

1
2m

(
∇S +

e

c
A

)2

+
e

c
A0 + U = 0, (2.3a)

∂ρ

∂t
+∇(ρV) = 0. (2.3b)

This classical system is representable in the wave form. Introducing the complex wave function (“order
parameter”)

ψ =
√
ρ eiS , (2.4)

we rewrite system (2.3) as the single nonlinear wave equation

iD0ψ +
1
2m
D2ψ − Uψ =

1
2m

∆|ψ|
|ψ| ψ, (2.5)
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where D0 = ∂t + eA0/c and D = ∇ + eA/c. The last equation has the form of the Schrödinger equation
(without a Planck constant) modified by the so-called quantum potential term in the right-hand side. It
admits all the usual solutions of classical mechanics but does not allow superpositions of these solutions.
Because system (2.3) describes the formal semiclassical limit of the quantum mechanical Schrödinger equa-
tion, Eq. (2.5) can be considered its dispersionless limit. In fact, wave equation (2.5) is covariant under the
gauge transformations

ψ → ψeiα, A→ A− c

e
∇α,

generating the shift of the classical action S → S + α. Being U(1) gauge invariant, the additional term in
the right-hand side of (2.5) then completely compensates the corresponding gauge-invariant contribution
from the dispersion in the left-hand side.

As mentioned above, Eq. (2.5) does not contain a Planck constant. But if we consider the contribution
from the quantum potential in the right-hand side of Eq. (2.5) deformed by a constant �

2,

iD0ψ +
1
2m
D2ψ − Uψ =

1
2m

(1 − �
2)
∆|ψ|
|ψ| ψ, (2.6)

then in terms of the new wave function

χ =
√
ρ eiS/�, (2.7)

we recover the standard linear Schrödinger equation

i�D0χ+
�

2

2m
D2χ− Uχ = 0,

where � plays the role of the Planck constant. For � �= 0, Eq. (2.6) is therefore gauge equivalent to
the Schrödinger equation; for � = 0, it reduces to nonlinear wave equation (2.5) of classical mechanics.
Moreover, for � = ±1, it reduces directly to the linear Schrödinger equation or its complex conjugate.

On the other hand, if the deformation of Eq. (2.5) appears with the opposite sign as

iD0ψ +
1
2m
D2ψ − Uψ =

1
2m

(1 + �
2)
∆|ψ|
|ψ| ψ, (2.8)

then it cannot be linearized to the form of the Schrödinger equation by transformation (2.7) in the same
classical limit � = 0 as for Eq. (2.6). However, Eq. (2.8) can be reduced to Eq. (2.6) by the formal analytic
substitution of the purely imaginary value � → i� for the Planck constant (in quantum mechanics, a
similar continuation to the classically inaccessible region leads to an exponentially decaying (growing) wave
function). Then, written in terms of the two real functions

Q± =
√
ρ e±S/�,

Eq. (2.8) and its complex conjugate become the pair of decoupled diffusion–antidiffusion equations

±�D0Q
± +

�
2

2m
D2Q± − UQ± = 0,

similar to the one Schrödinger considered in 1931 [10]. From the above consideration, we see that the
Schrödinger equation perturbed by a quantum potential includes the classical mechanics (� = 0), the
quantum mechanics (� = ±|�|), and the pair of diffusion–antidiffusion equations (� = i|�|) as particular
cases.

781



3. Chern–Simons hydrodynamics

The semiclassical limit was recently applied to the defocusing NLS equation

i�∂tχ+
�

2

2m
∆χ+ 2g|χ|2χ = 0, g < 0, (3.1)

in one [11] and two space dimensions [12]; it provides an analytic tool for describing shock waves in nonlinear
optics and vortices in a superfluid. Decomposing the wave function as in (2.7), we derive the quantum
deformation of the Hamilton–Jacobi equation by the quantum potential or, after differentiation with respect
to the space coordinates, the Madelung fluid. In the formal semiclassical limit � → 0 (before shocks appear),
we neglect the contribution from the quantum potential, and the fluid becomes the Euler system. In terms
of wave function (2.4), we then have the dispersionless NLS equation

i∂tψ +
1
2m

∆ψ + 2g|ψ|2ψ =
1
2m

∆|ψ|
|ψ| ψ. (3.2)

The quantum deformation of Eq. (3.2) in the form

i∂tψ +
1
2m

∆ψ + 2g|ψ|2ψ = (1 − �
2)

1
2m

∆|ψ|
|ψ| ψ,

reformulated for wave function (2.7), again leads to original equation (3.1).
Interacting with the CS gauge field in 2+1 dimensions, NLS model (3.1) is called the Jackiw–Pi (JP)

model and describes anyonic phenomena [13]. The semiclassical limit of anyons requires studying this model
in the limit as � → 0 or, similarly to the case of Eq. (3.2), its perturbations by the quantum potential.

To describe the deformed theory, we consider the Lagrangian

L =
κ

2
εµνλAµ∂νAλ +

i

2
(ψ̄D0ψ − ψD0ψ̄)−

1
2m

|Dψ|2 + (1 − �
2)

1
2m

(∇|ψ|)2 + g|ψ|4, (3.3)

where Dµ = ∂µ + ieAµ/c, leading to the system of equations of motion

iD0ψ +
1
2m
D2ψ + 2g|ψ|2ψ = (1 − �

2)
1
2m

∆|ψ|
|ψ| ψ, (3.4a)

∂1A2 − ∂2A1 =
e

κc
ψ̄ψ, (3.4b)

∂0Aj − ∂jA0 = − ie

2mcκ
εjk(ψ̄Dkψ − ψDkψ̄). (3.4c)

Factoring the wave function ψ given by Eq. (2.4) and introducing the new function χ given by Eq. (2.7),
we obtain the JP model:

i�

(
∂0 +

ie

�c
A0

)
χ+

�
2

2m

(
∇+

ie

�c
A

)2

χ+ 2g|χ|2χ = 0, (3.5a)

∂1A2 − ∂2A1 =
e

κc
χ̄χ, (3.5b)

∂0Aj − ∂jA0 = − ie�

2mcκ
εjk

[
χ̄

(
∂k +

ie

�c
Ak

)
χ− χ

(
∂k − ie

�c
Ak

)
χ̄

]
. (3.5c)
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The corresponding Lagrangian

L =
κ

2
εµνλAµ∂νAλ +

i�

2

[
χ̄

(
∂0 +

ie

�c
A0

)
χ− χ

(
∂0 −

ie

�c
A0

)
χ̄

]
−

− �
2

2m

(
∇− ie

�c
A

)
χ̄

(
∇+

ie

�c
A

)
χ+ g|χ|4 (3.6)

follows from (3.3). In system of equations (3.5), the deformation parameter � plays a role similar to the
Planck constant. Both systems (3.4) and (3.5) admit the same hydrodynamic (Madelung-type) representa-
tion. From Eq. (3.4a), we obtain the quantum Hamilton–Jacobi equation

∂S

∂t
+

[
mV 2

2
+

e

c
A0 − 2gρ− �

2

2m
∆
√
ρ

√
ρ

]
= 0 (3.7)

and continuity equation (2.3b), where we introduce local velocity field (2.2) Then Eqs. (3.5b) and (3.5c)
become

∂1A2 − ∂2A1 =
e

κc
ρ, (3.8)

∂0Aj − ∂jA0 =
e

κc
εjkρVk. (3.9)

Now, we can completely exclude the vector potentials A from consideration in favor of velocity field (2.2).
We note that this field is an explicitly gauge-invariant variable. From Eqs. (3.9) and (3.7), we then derive
the Euler equation for the velocity V,

∂V
∂t

+ (V∇)V = − 1
m
∇P (3.10)

with the pressure

P = −2gρ− �
2

2m
∆
√
ρ

√
ρ

. (3.11)

In terms of our hydrodynamic variables, CS Gauss law (3.8) becomes

∇×V =
e2

mκc2
ρ, (3.12)

which has the simple meaning of a rotational fluid such that the local vorticity is nonzero at any point
of the fluid with a nonvanishing density ρ. System of equations (2.3b) and (3.10)–(3.12) determines the
Madelung fluid for our model. Like the velocity field in (2.2), it is explicitly U(1) gauge invariant. Moreover,
continuity equation (2.3b) in this system is not independent. It appears as a consistency condition for CS
Gauss law (3.12) during the evolution. To verify this, it is sufficient to simply differentiate (3.12) with
respect to time and substitute the result in (3.10). We therefore have a hydrodynamic model defined by
two equations:

∂V
∂t

+ (V∇)V = − 1
m
∇

(
−2gρ− �

2

2m
∆
√
ρ

√
ρ

)
,

∇×V =
e2

mκc2
ρ.

(3.13)

The semiclassical or dispersionless limit of this model as � → 0 is given by
∂V
∂t

+ (V∇)V = − 1
m
∇(−2gρ),

∇×V =
e2

mκc2
ρ.

The nonlinear wave form of these equations follows directly from system (3.4), and the Lagrangian follows
from Eq. (3.3) with � = 0.
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4. Quantum velocity and stationary flow

The quantum potential was recently interpreted in terms of the velocity of internal motion [14]. In
that approach, a decomposition of the nonrelativistic local velocity into two parts, one parallel and the
other orthogonal to the momentum, was obtained based on the Pauli current. The first part, determined by
∇S and interpreted as the “classical” part, corresponds to the velocity of the center-of-mass. The second
part, called the “quantum” part, is the velocity of motion in the center-of-mass frame (the internal “spin
motion” or Schrödinger’s zitterbewegung). The contribution of the quantum potential to Lagrangian (3.6)
then has the simple physical meaning of the kinetic energy for the spin motion,

�
2

2m
(∇|χ|)2 =

�
2

8m

(
∇ρ

ρ

)2

=
mV2

q

2
,

where the “quantum” velocity is defined by

Vq =
∇ρ× s
mρ

.

For planar motion in the xy plane, ∇z = 0 and sx = sy = 0. Therefore, sz = �/2, and we have

(Vq)x =
�

2m
∂yρ

ρ
, (Vq)y = − �

2m
∂xρ

ρ

or

(Vq)i =
�

2m
εij

∂jρ

ρ
(4.1)

for the components of the quantum velocity. Differentiating Eq. (4.1) with respect to time and using
continuity equation (2.3b), we obtain

∂0Vq + (V∇)Vq = 0,

which means that Vq propagates with the main flow velocity V, i.e., it is the velocity of the inner motion.
Moreover, by direct computation from Eq. (4.1), we obtain the no-divergence condition for the quantum
velocity flow, ∇(ρVq) = 0. This condition applied to continuity equation (2.3b) for a flow propagating with
the quantum velocity

V = ±Vq, (4.2)

which has the meaning of a special planar motion with equal velocities of the classical (center-of-mass) and
the quantum (internal) motions, leads to stationary flow, ∂0ρ = 0.

On the other hand, for the stationary flow where ∂0V = 0 and

κg

e2
= ± �

2mc2
, (4.3)

Madelung fluid equation (3.13) can be rewritten as

m

2
∇j(V −Vq)(V +Vq)−

e2

κc2
ρεjk(V ∓Vq)k ∓ �

2
∇j [∇× (V ∓Vq)] = 0,

which is identically satisfied by Eq. (4.2). Deriving this equation, we use the identity

�
2

2m
∇√

ρ
√
ρ

=
mV2

q

2
− �

2
[∂1(Vq)2 − ∂2(Vq)1]
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and CS Gauss law (3.12). Therefore, under condition (4.2), we need only satisfy the vorticity condition
in (3.13) for the quantum velocity,

∇×Vq = ± e2

κmc2
ρ,

in order to obtain the Liouville equation in the form

∆ log ρ = ∓ 2e2

κ�c2
ρ

from definition (4.1).
We stress that the Liouville equation in our model has the meaning of the vorticity condition for the

quantum flow. Solutions of the model are well known [13, 15]. We only mention that in the polar symmetric
case (for the minus sign), we obtain the solution

ρ = 4
κ�c2N2

e2r2

[(
r

r0

)N

+
(r0

r

)N
]−2

,

which is regular for N ≥ 1 and can be ontained from the general solution

ρ = α
|ζ′(z)|2

(1 + |ζ(z)|2)2 ,

where

ζ(z) =
cN

(z − z0)N
, z = x+ iy.

There are two physical conditions in the original (ψ,A) formulation that restrict our solution. It follows
from the regularity of the gauge potential A that the phase of χ given by (2.7) (see Eqs. (3.5)) must be

S

�
= (N − 1)θ, θ = tan−1 x2

x1

and N must be an integer for single-valued χ. But single-valuedness of the original function ψ given by (2.4)
in system (3.4) requires that the product (N − 1)� be integer-valued. This, in turn, requires that for any
integer N , the deformation parameter � be integer-valued, � = n. As a consequence of (4.3), we obtain the
quantization condition

κg

e2
= ± n

2mc2
, n = 1, 2, 3, . . . .

This relation means that the CS coupling constant and the quantum potential strength must be quantized,

κ = n
e2

2gmc2
, 1− �

2 = 1− n2 = (1 − n)(1 + n).

We now present the Lagrangian formulation of our fluid model given by system (3.13). Excluding the
vector potentials Aµ from Lagrangian (3.6), we obtain

L =
κm2c2

2e2
εµνλVµ∂νVλ − ρV0 − ρ

mV2

2
− ρ

mVq
2

2
+ gρ2,

where V0 plays the role of the Lagrange multiplier. The Hamilton function (constrained by the CS Gauss
law)

H =
∫

ρ
mV2

2
+ ρ

mVq
2

2
− gρ2

is simply interpreted as the sum of the kinetic energies of the classical and quantum motions plus the
self-interaction energy. It is easy to verify that it vanishes for self-dual flow (4.2) with fixed constants (4.3).
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5. Reduction to 1+1 dimensions

For a one-dimensional flow, for example, in the x direction with ∂2 = 0, system (3.13) reduces to

∂0V1 + V1∂1V1 =
1
m

∂1

(
2gρ+

�
2

2m
∂2
1
√
ρ

√
ρ

)
, (5.1a)

∂0V2 + V1∂1V2 = 0, (5.1b)

∂1V2 =
e2

κmc2
ρ. (5.1c)

Substituting ∂1V2 from Eq. (5.1c) in (5.1b), we find that the velocity field component V2 is decoupled
completely from Eq. (5.1a) and is determined by the first-order system of equations

∂1V2 =
e2

κmc2
ρ, ∂0V2 = − e2

κmc2
ρV1.

Then the compatibility condition for this system is just the continuity equation for the one-dimensional
flow,

∂0ρ+ ∂1(ρV1) = 0. (5.2)

Equations (5.1a) and (5.2) determine the Madelung fluid in one space dimension. Rewriting them for the
wave function

χ =
√
ρ exp

(
i

�

∫ x

−∞
V1

)
,

we obtain the NLS model

i�∂0χ+
�

2

2m
∂2
1χ+ 2g|χ|2χ = 0.

We note that with the minus sign for the quantum deformation in system (3.4), corresponding to the
replacement �

2 → −�
2, the one-dimensional reduction of the fluid is given by system (5.2), (5.1a), where

we must change the sign of the quantum potential contribution in Eq. (5.1a). The result is that for the
wave function

ψ =
√
ρ exp

(
i

∫ x

−∞
V1

)
,

we obtain the NLS model modified by the quantum potential,

i∂0ψ +
1
2m

∂2
1ψ + 2g|ψ|2ψ = (1 + �

2)
1
2m

∂2
1 |ψ|
|ψ| ψ. (5.3)

In terms of the two real functions

Q± =
√
ρ exp

(
±1

�

∫ x

−∞
V1

)
,

we have the “dissipative” (reaction-diffusion) version of the NLS model

±�∂0Q
± +

�
2

2m
∂2
1Q

± + 2gQ+Q−Q± = 0.
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This analogy allows deriving a bilinear representation for (5.3). The solution for the wave function ψ is
represented in terms of the three real functions G± and F ,

ψ =
(G+)(1−i�)/2(G−)(1+i�)/2

F
, ψ̄ =

(G+)(1+i�)/2(G−)(1−i�)/2

F
,

where the functions satisfy the bilinear system of equations

(
±�Dt −

�
2

2m
D2

x

)
(G± ∗ F ) = 0,

�
2

2m
D2

x(F ∗ F ) = 2gG+G−.

The hydrodynamic variables are then given by

V1 =
�

2m
∂1 log

G−

G+
, ρ =

�
2

2mg
∂2
1(logF ).

Constructing one- and two-soliton solutions, we find that the soliton dynamics of Eq. (5.3), in contrast
to the NLS case, have a rich resonance phenomenology [4, 8]. Another reduction of (2+1)-dimensional
model (3.4) leads to a DNLS-type equation and its reaction-diffusion analogue. Details of the reduction
procedure and resonance soliton interactions will be published elsewhere.

6. Conclusion

We have reformulated the classical dynamics of a nonrelativistic particle interacting with an Abelian
gauge field as a nonlinear wave equation with a quantum potential. Considering deformations of this
equation, we have found two cases depending on the sign of deformation. For one sign, we obtained the
standard Schrödinger model with the deformation parameter playing the role of the Planck constant. For
the other sign, we obtained a diffusion–antidiffusion equation. Specifying the gauge field as the CS one
and adding a cubic nonlinear term to the Schrödinger equation, we found the dispersionless limit of the
JP model, which could be a useful description of the semiclassical limit of the anyon. The deformation of
this model is equivalent to the standard JP model, which we represented as the rotational hydrodynamics
of a Madelung-type fluid. A special flow in this fluid with equal velocities of the classical and quantum
motions leads to the Liouville equation admitting vortex configurations. A similar equation, as previously
found [4, 8], defines the event horizon for a solution of the black-hole type in the one-dimensional NLS with
quantum potential (5.3). Moreover, in terms of the wave function, it is exactly the CS self-(antiself-)duality
condition [13]. In fact, because the self-duality equations are first-order equations, they can be interpreted
in terms of velocity fields. We therefore hope that our interpretation can be applied to other models as
well.

Acknowledgments. One of the authors (O. K. P.) thanks Professor Pierre Sabatier for the useful
discussion and Professor Fon-Che Liu and the Institute of Mathematics, Academia Sinica, Taipei, for the
warm hospitality.

This work was supported in part by the Izmir Institute of Technology, Turkey, and the Institute of
Mathematics, Academia Sinica, Taipei, Taiwan.

787



REFERENCES

1. F. Guerra and M. Pusterla, Lett. Nuovo Cimento, 34, 351–356 (1982); J. P. Visier, Phys. Lett. A, 135, 99–105

(1989).

2. L. Smolin, Phys. Lett. A, 113, 408–412 (1986); O. Bertolami, Phys. Lett. A, 154, 225–229 (1991).

3. R. Schiller, Phys. Rev., 125, 1100–1108, 1109–1115, 1116–1123 (1962); N. Rosen, Amer. J. Phys., 32, 597–600

(1964).

4. O. K. Pashaev and J. H. Lee, “Black holes and solitons of quantized dispersionless NLS and DNLS equations,”

ANZIAM J. Appl. Math (in press).

5. P. C. Sabatier, Inverse Problems, 6, L47–L53 (1990).

6. G. Auberson and P. C. Sabatier, J. Math. Phys., 35, 4028–4040 (1994).

7. D. Bohm, Phys. Rev., 85, 166–179 (1952).

8. O. K. Pashaev and J. H. Lee, J. Nonlinear Math. Phys. (Suppl.), 8, 1–5 (2001); “Resonance NLS solitons as

black holes in Madelung fluid,” hep-th/9810139 (1998).

9. L. Martina, O. K. Pashaev, and G. Soliani, Class. Q. Grav., 14, 3179–3186 (1997); Phys. Rev. D, 58, 084025

(1998).

10. E. Schrödinger, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Klasse, 144–153 (1931).

11. S. Jin, C. D. Levermore, and D. W. McLaughlin, Commun. Pure Appl. Math., 52, 613–654 (1999).

12. N. Ercolani and R. Montgomery, Phys. Lett. A, 180, 402–408 (1993).

13. R. Jackiw and S.-Y. Pi, Phys. Rev. Lett., 64, 2969 (1990); Phys. Rev. D, 42, 3500–3513 (1990).

14. G. Salesi, Mod. Phys. Lett. A, 22, 1815 (1996); G. Salesi and E. Recami, “Hydrodynamics of spinning particles,”

hep-th/9802106 (1998).

15. V. A. Arkadiev, A. K. Pogrebkov, and M. C. Polivanov, Inverse Problems, 5, L1 (1989).

788


