Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4592
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSofuoğlu, Sait Cemil-
dc.contributor.authorSofuoğlu, Aysun-
dc.contributor.authorBirgili, Savaş-
dc.contributor.authorTayfur, Gökmen-
dc.date.accessioned2016-05-03T12:51:25Z
dc.date.available2016-05-03T12:51:25Z
dc.date.issued2006-07
dc.identifier.citationSofuoğlu, S. C., Sofuoğlu, A., Birgili, S., and Tayfur, G. (2006). Forecasting ambient air SO2 concentrations using artificial neural networks. Energy Sources, Part B: Economics, Planning and Policy, 1(2), 127-136. doi:10.1080/009083190881526en_US
dc.identifier.issn1556-7249
dc.identifier.issn1556-7249-
dc.identifier.urihttp://doi.org/10.1080/009083190881526
dc.identifier.urihttp://hdl.handle.net/11147/4592
dc.description.abstractAn Artificial Neural Networks (ANNs) model is constructed to forecast SO 2 concentrations in Izmir air. The model uses meteorological variables (wind speed and temperature) and measured particulate matter concentrations as input variables. The correlation coefficient between observed and forecasted concentrations is 0.94 for the network that uses all three variables as input parameters. The root mean square error value of the model is 3.60 g/mt 3 . Considering the limited number of available input variables, model performances show that ANNs are a promising method of modeling to forecast ambient air SO 2 concentrations in Izmir.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofEnergy Sources, Part B: Economics, Planning and Policyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAir pollutionen_US
dc.subjectArtificial neural networksen_US
dc.subjectForecastingen_US
dc.subjectSulfur dioxideen_US
dc.subjectCorrelation coefficienten_US
dc.titleForecasting ambient air SO2 concentrations using artificial neural networksen_US
dc.typeArticleen_US
dc.authoridTR59409en_US
dc.authoridTR27717en_US
dc.authoridTR2054en_US
dc.institutionauthorSofuoğlu, Sait Cemil-
dc.institutionauthorSofuoğlu, Aysun-
dc.institutionauthorTayfur, Gökmen-
dc.departmentİzmir Institute of Technology. Chemical Engineeringen_US
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.identifier.volume1en_US
dc.identifier.issue2en_US
dc.identifier.startpage127en_US
dc.identifier.endpage136en_US
dc.identifier.wosWOS:000241491900002en_US
dc.identifier.scopus2-s2.0-33748508614en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/009083190881526-
dc.relation.doi10.1080/009083190881526en_US
dc.coverage.doi10.1080/009083190881526en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.07. Department of Environmental Engineering-
crisitem.author.dept03.02. Department of Chemical Engineering-
crisitem.author.dept03.03. Department of Civil Engineering-
Appears in Collections:Environmental Engineering / Çevre Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
4592.pdfMakale324.66 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

20
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

14
checked on Nov 9, 2024

Page view(s)

492
checked on Nov 18, 2024

Download(s)

332
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.