Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/4592
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sofuoğlu, Sait Cemil | - |
dc.contributor.author | Sofuoğlu, Aysun | - |
dc.contributor.author | Birgili, Savaş | - |
dc.contributor.author | Tayfur, Gökmen | - |
dc.date.accessioned | 2016-05-03T12:51:25Z | |
dc.date.available | 2016-05-03T12:51:25Z | |
dc.date.issued | 2006-07 | |
dc.identifier.citation | Sofuoğlu, S. C., Sofuoğlu, A., Birgili, S., and Tayfur, G. (2006). Forecasting ambient air SO2 concentrations using artificial neural networks. Energy Sources, Part B: Economics, Planning and Policy, 1(2), 127-136. doi:10.1080/009083190881526 | en_US |
dc.identifier.issn | 1556-7249 | |
dc.identifier.issn | 1556-7249 | - |
dc.identifier.uri | http://doi.org/10.1080/009083190881526 | |
dc.identifier.uri | http://hdl.handle.net/11147/4592 | |
dc.description.abstract | An Artificial Neural Networks (ANNs) model is constructed to forecast SO 2 concentrations in Izmir air. The model uses meteorological variables (wind speed and temperature) and measured particulate matter concentrations as input variables. The correlation coefficient between observed and forecasted concentrations is 0.94 for the network that uses all three variables as input parameters. The root mean square error value of the model is 3.60 g/mt 3 . Considering the limited number of available input variables, model performances show that ANNs are a promising method of modeling to forecast ambient air SO 2 concentrations in Izmir. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor and Francis Ltd. | en_US |
dc.relation.ispartof | Energy Sources, Part B: Economics, Planning and Policy | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Air pollution | en_US |
dc.subject | Artificial neural networks | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Sulfur dioxide | en_US |
dc.subject | Correlation coefficient | en_US |
dc.title | Forecasting ambient air SO2 concentrations using artificial neural networks | en_US |
dc.type | Article | en_US |
dc.authorid | TR59409 | en_US |
dc.authorid | TR27717 | en_US |
dc.authorid | TR2054 | en_US |
dc.institutionauthor | Sofuoğlu, Sait Cemil | - |
dc.institutionauthor | Sofuoğlu, Aysun | - |
dc.institutionauthor | Tayfur, Gökmen | - |
dc.department | İzmir Institute of Technology. Chemical Engineering | en_US |
dc.department | İzmir Institute of Technology. Civil Engineering | en_US |
dc.identifier.volume | 1 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 127 | en_US |
dc.identifier.endpage | 136 | en_US |
dc.identifier.wos | WOS:000241491900002 | en_US |
dc.identifier.scopus | 2-s2.0-33748508614 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1080/009083190881526 | - |
dc.relation.doi | 10.1080/009083190881526 | en_US |
dc.coverage.doi | 10.1080/009083190881526 | en_US |
dc.identifier.wosquality | Q3 | - |
dc.identifier.scopusquality | Q2 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 03.07. Department of Environmental Engineering | - |
crisitem.author.dept | 03.02. Department of Chemical Engineering | - |
crisitem.author.dept | 03.03. Department of Civil Engineering | - |
Appears in Collections: | Environmental Engineering / Çevre Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
20
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
14
checked on Nov 9, 2024
Page view(s)
492
checked on Nov 18, 2024
Download(s)
332
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.