Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4176
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAy Saylam, Başak
dc.contributor.authorYeşil, Mehmet-
dc.date.accessioned2014-11-18T08:01:12Z
dc.date.available2014-11-18T08:01:12Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/11147/4176
dc.descriptionThesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2014en_US
dc.descriptionIncludes bibliographical references (leaves: 29)en_US
dc.descriptionText in English; Abstract: Turkish and Englishen_US
dc.descriptionvii, 29 leavesen_US
dc.description.abstractLet R be an integrally closed domain, and denote by I(R) the multiplicative group of all invertible fractional ideals of R. Let {Vi}i∈I be the family of valuation overrings of R, and denote by Gi the corresponding value group of the valuation domain Vi. We show that R = Ti∈I Vi, and there is a map from I(R) into Qi∈I Gi, the cardinal product of the Gi’s. Furthermore, it is well known when R is a Dedekind domain, this map becomes an isomorphism onto `i∈I Gi, the cardinal sum of the Gi’s. In this case, Gi ∼= Z for each i. It is shown, by J. Brewer and L. Klingler, that this map is also an isomorphism onto`i∈I Gi when R is an h-local Prüfer domain. In this thesis, we investigate the existence of such a map, and whether it is injective when R is a Krull domain.en_US
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectKrull domainsen_US
dc.subjectApproximation theormsen_US
dc.subject.lcshCommutative ringsen_US
dc.titleApproximation theorems for Krull domainsen_US
dc.title.alternativeKrull tamlık bölgeleri için yaklaşım teoremlerien_US
dc.typeMaster Thesisen_US
dc.institutionauthorYeşil, Mehmet-
dc.departmentThesis (Master)--İzmir Institute of Technology, Mathematicsen_US
dc.relation.publicationcategoryTezen_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeMaster Thesis-
item.languageiso639-1en-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
10035456.pdfMasterThesis195.5 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

212
checked on Nov 25, 2024

Download(s)

50
checked on Nov 25, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.