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ABSTRACT

APPROXIMATION THEOREMS FOR KRULL DOMAINS

Let R be an integrally closed domain, and denote/bi) the multiplicative group
of all invertible fractional ideals of?. Let {V;};c; be the family of valuation overrings of
R, and denote by~; the corresponding value group of the valuation doniginWe show
that R = (,.,; Vi, and there is a map from(R) into [],_, G;, the cardinal product of the
G;’'s. Furthermore, it is well known wheR is a Dedekind domain, this map becomes an
isomorphisnonto] [, ; G, the cardinal sum of th€’s. In this case(; = Z for eachi. It is
shown, by J. Brewer and L. Klingler, that this map is also amisrphisnonto] [, _; G; when
R is an h-local Prufer domain. In this thesis, we investigh&eexistence of such a map, and
whether it is injective whetR is a Krull domain.



OZET
KRULL TAMLIK B OLGELER ICIN YAKLASIM TEOREMLERI

R bir tamsayica kapall tamlik bolgesi olsunMg?), R’nin terslenebilir kesirli ideal-
lerinin carpimsal grubunu belirtsid.V; };c;, R’nin valiasyon usthalkalarinin ailesi olsun ve
G, V; valiasyon tamlik bolgesine karsilik gelen deger grubbelirtsin. BizR = (., Vi
esitligini ve/ (R)'den G;’lerin kardinal carpiminin igine, yarji[, ., G;'nin igine bir fonksiyon
oldugunu gosterdikR bir Dedekind tamlik bolgesi oldugunda bu fonksiyorteyierin kardi-
nal toplamina, yanj [,_, G;’ye orten bir izomorfizma oldugu bilinmektedir. Bu durueber
bir i icin GG; tam sayilar grubuna izomorftu bir h-yerel Prufer tamlik bolgesi oldugunda
bu fonksiyonunG;’lerin kardinal toplamina orten bir izomorfizma olduguBrewer ve L.
Klingler tarafindan gosterilmistir. Bu tezd&, bir Krull tamhk bolgesi oldugunda boyle bir
fonksiyonun varhgi ve birebirligi arastiniimistir.
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CHAPTER 1

INTRODUCTION

Throughout this thesis? is an integral domain with quotient field unless otherwise
stated. We will denote by'( R) the multiplicative monoid of all fractional ideals &f and by
I(R) the multiplicative group of all invertible fractional idiseof R.

Definition 1.1 A Dedekind domain is a Noetherian, integrally closed, iraeglomain of

Krull dimension 1, i.e., every non-zero prime ideal is maatim

If Ris a Dedekind domain, then all fractional idealsidfre invertible, i.e.F'(R) =
I(R). Furthermore, if M, },c; is the set of all maximal ideals of a Dedekind dom&inthen
each non-zero fractional ideal &f can be written uniquely in the formd = M " - M,
and the mappingd — (z;,, ..., 2;,,) is an order isomorphism from(R) onto the cardinal
.1 Li, WwhereZ; = 7. for each.

If R is the ring of integers, then any idealZ of Z can be written in the forrmZ =

sum] |

(mZ)* - - - (puZ)*™, wherem = pi' - - - pi", z1, ..., 2z, € Z,andpy, ..., p, are different prime
integers. This is a well-known example of the above fact abmdekind domains.

One can drop both the Noetherian and the one-dimensionaigg®ns and consider
I(R) whenR is a Prufer domain of finite character. A similar fact willdoene true if any non-
zero prime ideal of? contained in one maximal ideal &. It was proven by James Brewer
and Lee Klingler in the paper "The Ordered Group of Invedildeals of a Prifer Domain of
Finite Character” by using two important approximationdreans for Prifer domains.

In Chapter 2 we mention about fundamental properties ofibmal ideals, integrally
and completely integrally closed domains which will be usébr our work. We also give
the definitions and some specific properties of totally aedeand lattice-ordered groups. For
further information and proofs we refer to (L. Fuchs & L. S3lc (M.F. Atiyah & I.G.
Macdonald), (R. Gilmer).

In Chapter 3 we give definitions and properties of valuatammgvaluation domains. In
addition, we give the fact that every integrally closed donmathe intersection of its valuation
overrings. This fact gives us an order-preserving isomisrplfrom I (R) into [[,., Gi, the
cardinal product of value groups of valuation overringsrofraegrally closed domair.

In Chapter 4 we give the definition and properties of Pri@ndins. Also, we give the
"Strong Approximation Theorem” and the "Very Strong Appimation Theorem” for Prifer
domains which are used to prove that there is an isomorph@mthe group of all invertible



fractional ideals ofk ontothe cardinal direct sum of value groups of valuation ovesiof
R, whereR is a Prufer domain, if and only if every nonzero elemenkdé contained in but
a finite number of maximal ideals and every nonzero primelidé& is contained in only
one maximal ideal. For further information and proofs wesr¢d (J. Brewer & L. Klingler,
2005).

In Chapter 5 it is proven that a Krull domaiis the intersection of its discrete rank
1 valuation overrings, which are exactly the localizatiofs? at its minimal prime ideals.
Furthermore, we have defined and proved the "Strong Appration Theorem” and the "Very
Strong Approximation Theorem” for Krull domains.



CHAPTER 2

PRELIMINARIES

This chapter consists of some preliminary information aliactional ideals and in-
tegral dependence. Also, totally ordered and latticet@digroups structures ,which are used
in following chapters, are given.

2.1. Fractional Ideals

Let R be an integral domain with the quotient figld

Definition 2.1 A fractional ideal of an integral domai® is an R-submodule/ of () such
thatrJ < R for some non-zero € R.

Remark 2.1 (1) An R-submodule of) is a fractional ideal if and only if it is isomorphic
to an ideal ofR.

(1) The ideals ofR are clearly fractional ideals, and they are called integidéals.

(3) Afinitely generated submodule@fis a fractional ideal.

For R-submoduleg and.J of @, we already have two binary operations; suni ahd
J, I+ J and intersection of and.J, I N J. In addition, we define two more binary operations,
which are called the product and the residual, respectively

IJ={> aibila; € I,b; € J,n <w}andl : J ={a € QlaJ < I}.

=1
We list a few properties of the operations mentioned abow./|.J and K be R-
submodules of); then:
() I(J+K)=1J+IK;
(i I:(J+K)=(U:J)n(I:K);
iy (InJ):K=(I:K)n(J:K);

(ivy ({:J):K=1:JK=(]:K):J,



V) I(IJ:1)=1J;

Vi) In))+(INK)<INn(J+K);
(i) I(JNK) < IJNIK;

Wi) I:K)+(J:K)<({I+J): K.

Furthermore, properties (i), (ii) and (iii) can be extendednfinite sums and infinite

intersections:
)" I(xen D) = 2nea I
(@) I (Crea ) = Maeall ),
(i) (Xpen ) : L= Naea(a: D).

The set of all non-zero fractional ideals Bfis denoted byF'(R), and it becomes a
multiplicative monoid with the associative binary opevatproduct and the identity element
R.

Definition 2.2 A non-zero fractional ideal of R is said to be invertible if it is invertible as
an element of the multiplicative monait{ R). In other words, there exists.A € F'(R) such
that/J = JI = R.

The inverse of a fractional idedlof R is unique and denoted by !. The set of all
invertible fractional ideals of? is denoted by/(R), and it becomes a multiplicative group
which is a submonoid of the monoid(R).

Definition 2.3 A ring R is a local ring if it has only one maximal ideal, equivalentfyr or
1 — ris a unit for anyr € R. In addition, if R has finitely many maximal ideals, then it is
called a semilocal ring.

Proposition 2.1 ( (L. Fuchs & L. Salce), Proposition 1.2.5) Létbe an invertible fractional
ideal of a domaink. Then:

@ I'=R:I;
(b) I isfinitely generated;

(o) if R is semilocal, thed is a principal ideal; moreover, if? is local, every generating
set of/ contains an element generatirig

(d) if I is an integral ideal andP is a minimal prime ofl, then P is a minimal prime of
some generator in any generating set/ pf



(e) If I is anintegral ideal and there is ai e I contained in finitely many maximal ideals,
then/ = aR + bR for someb € R.

Proposition 2.2 ( (L. Fuchs & L. Salce), Proposition 1.2.7) A finitely genexdideall of an
integral domaink is invertible if and only iff R, is invertible for all maximal ideald/ of R.

Definition 2.4 A non-zero fractional ideal of an integral domainR is said to be divisorial
ifI=R:(R:1I).

Proposition 2.3 ((L. Fuchs & L. Salce), Proposition |.2.9) L&be a domain and € F(R).
Then

(8 R : Iisdivisorial for all I;
(b) R: (R:1)=){aR|I <aR};
(c) Iisdivisorialif and only if/ = {aR|I < aR};

(d) if I is divisorial, then! : J is divisorial for all J € F(R).

2.2. Integrally Closed Domains

Definition 2.5 LetT be an integral domain an® a subring of/’. An element € T is said
to be integral overR if there exists a monic polynomig@le R[z| such thatf(z) = 0.

Theorem 2.1 ( (L. Fuchs & L. Salce), Theorem 1.3.1) L&t be an integral domaini a
subring of 7", andz € T'. The following are equivalent:

(&) zisintegral overR;
(b) the subringR|x] of T', which is generated bi andz, is a finitely generated&®-module;

(c) there is a subrings of T containingz, which is finitely generated as @module.

Corollary 2.1 ( (L. Fuchs & L. Salce), Corollary 1.3.2) The elements of ategnal domain
T, which are integral over a subring, form a subring containingg.

The subring ofl’ mentioned in Corollary 2.1 is called thetegral closure of Rin T.
If each element of " is integral overR, we say thafl" is integral over R, and if R coincides
with its integral closure iff’, we say thatR is integrally closed in7. Moreover, R is an
integrally closed domainif it is integrally closed in its quotient field.



Lemma 2.1 ( (L. Fuchs & L. Salce), Exercise 1.3.1) L&tbe a domain with quotient fiel@.
Suppose that # x € Q. Then the element! is integral overR if and only ifx~! € R|x].

Proof Let0 # x € Q. Suppose that™! is integral overR. Then we have:; + a,z~! +
ot a2 = 0,0, € Rfor1 < i < n. Now, if we multiply the previous
equation byz"~!, we will havea; 2" ! + a2 + --- 4+ a, + 7' = 0. This givesz™! =
—(a12" ' 4 agz™ 2 + - - + a,) € R[z]. Conversely, suppose that' ¢ R[z]. Then we can
write 7! = ag + a1z + - - + a2, a; € R, 0 < i < n. After multiplying both sides of the
equation by(z=1)", we have) = a,, + a, 177" + @, o(x )2 + - + ap(xz™ )" — (a7 1)+

Hence,z~! is integral overR. O

Definition 2.6 An integral domainR is called a GCD-domain if every pair, b of elements
has a greatest common divisor g.@uh) = d, i.e.,d

a,bandc|a, b impliesc|d.

Proposition 2.4 ( (L. Fuchs & L. Salce), Proposition 1.3.4) GCD-domains argegrally
closed.

2.3. Completely Integrally Closed Domains

Definition 2.7 Let T" be an integral domain containing the subridty An element: € T
is called almost integral oveR if there is a finitely generate®-submodule of’ containing
R|x].

Remark 2.2 By Theorem 2.1(c), if € T'is integral overR, thenz is almost integral overR

as well.

The set of elements of an integral domdinwhich are almost integral ovét, form
a subring ofT" is called thecomplete integral closure of R in T'. If R coincides with its
complete integral closure if, R is calledcompletely integrally closed inT'. Furthermore,
R is a completely integrally closed domain if it is completaitegrally closed in its quotient
field.

Proposition 2.5 ( (L. Fuchs & L. Salce), Proposition 1.3.9) L&t be an integral domain and
Q its quotient field. Ther € @ is almost integral overR if and only if there is an element
r € R* such thatz™ € Rforalln € N.

There is a relation, which has an attractive role for congbyeintegrally closed do-
mains, for non-zero fractional ideals.J in F'(R), defined byl ~ Jifandonlyif R : I =
R : J. Using Proposition 2.3(a), it follows that:



(1) this is a congruence relation i( R);
(2) I is congruent to the divisorial idedl = R: (R: I);
(3) distinct divisorial ideals are incongruent.

The equivalence classes undeare calleddivisors. The divisor containing the frac-
tional ideal! is denoted byliv(7), and the set of all divisors is denoted B R). Also, we
will use div(x) for the divisor containing principal fractional ideaR, where0 # = € Q).

The set of all divisor® (R) becomes an additive monoid under the operadief/) +
div(J) = div(IJ) with the identitydiv(R). This operation is well-defined sinde : I.J =
R:I):J={R:1,):J={R:J):1I,=(R: J,): 1, =R : L,J, implies that
div(I) + div(J) = div(l,) + div(J,). Moreover,D(R) is a partially ordered monoid by
definingdiv(l) < div(J)if R: I < R: J.

Proposition 2.6 ( (L. Fuchs & L. Salce), Proposition |.3.11)1fand.J are non-zero fractional
ideals of an integral domai®, the supremum afiv(/) anddiv(J) is div({ N J), while their
infimum isdiv (7 + J).

Proposition 2.6 shows that the mondidR) is lattice-ordered. However, next theorem
proves thatD(R) becomes a lattice-ordered grougfis an integrally closed domain.

Proposition 2.7 ( (L. Fuchs & L. Salce), Proposition 1.3.10) Each non-undf a completely
integrally closed domaik satisfieq),, "R = 0.

Theorem 2.2 ( (L. Fuchs & L. Salce), Theorem 1.3.12) The mondidR) of the divisors of
R is a lattice ordered group if and only & is completely integrally closed.

2.4. Totally Ordered and Lattice-Ordered Groups

Definition 2.8 An abelian group, which is a totally ordered set under a binary relatien
is called a totally ordered group if it satisfies that< b impliesa+c¢ < b+cforall a,b, c € G.

An elementq of a totally ordered groujg- is calledpositive or strictly positive if
a > 0ora > 0, respectively. The set of all the positive elementg-ois calledpositivity
domain of G and it is denoted by .

Definition 2.9 A subgroupH of a totally ordered grou- is said to be convex or isolated if
a<g<bwitha,be H, g€ Gimpliesthaty € H.

The order type of the set of all proper convex subgroups &f called theank of G.



Definition 2.10 An abelian group(z, which is partially ordered set under a binary relation
<, is called a lattice-ordered group if any two elements-ohave a least upper bound, i.e.,
givena, b € G, there isg € GG such thain < g andb < g.

Let G be a partially ordered set. We say tldats filtered if for any a,b € G, there
existsc € GG such thatw < c andb < ¢ (or, equivalentlye < a ande < b).

Theorem 2.3 ( (R. Gilmer), Theorem 15.4.(1)) L&t be a partially ordered and filtered
abelian group. Then the following are equivalent:

(1) G is lattice-ordered;
(2) sup(a, b) exists for alla,b € GT;
(3) inf(a,b) exists for alla,b € G*.

The set of minimal elements amongst the strictly positieergdnts of7 is denoted by
Min G* and fory € G, v € Min G™ if and only if ¥ > 0 and there is n@ € Min G* with
0<pB<n.

Lemma 2.2 ( (L. Fuchs & L. Salce), Lemma 111.4.8) Lét be a lattice-ordered group and
v € MinG". f v < a3+ -+ a, With0 < a; for1 < i < n, theny < «; for some
ie{l,...,n}.

Theorem 2.4 ( (L. Fuchs & L. Salce), Theorem 111.4.9) Lét be a lattice-ordered abelian
group such that every non-empty set of positive elementaicgra minimal member. Then
is order-isomorphic to the free grou@. ., o+ 7Z endowed by the pointwise ordering.

Corollary 2.2 ( (L. Fuchs & L. Salce), Corollary 111.4.10) Lef? be a lattice-ordered sub-
group of a free abelian group’ lattice-ordered by the pointwise ordering. Then

G =D, ertinc 12



CHAPTER 3

VALUATION DOMAINS

In this chapter we review the most useful properties of wdnadomains which play a
distinguished role in our discussions in latter chapters Wl see for every valuation domain
R, there exists a valuation from the quotient fi€Jaf R to a totally ordered value group, and
this valuation satisfies that elements(@fwhich have non-negative values, are exactly from
the domainR. Furthermore, in the last section of this chapter, we havetioieed that there
is an isomorphism from the set of invertible ideals of angnadly closed domairR into the
cardinal product of the value groups of valuation overrioh&.

3.1. Fundamental Properties of Valuation Domains

Proposition 3.1 The following are equivalent for a ring:
(a) forallidealsA,Bof R, AC Bor B C A;

(b) for all elements:,b of R, aR C bR or bR C aR.

Proof (a = b) Itisclear.
(b = a) Supposed ¢ B for any given two ideals of:. Then there is an element
a€ A— B.Nowforallb € B,bR C aR sinceaR ¢ B. So,B C aR C A.
O]

Definition 3.1 When a ringR satisfies the equivalent conditions in Proposition 3.1sit i
called a valuation ring. A valuation ring which is an integi@domain will be called a val-

uation domain.

Proposition 3.2 Let R be an integral domain with the quotient figld ThenR is a valuation
domainifand onlyifforald # z € Q,x € Rora~! € R.

Proof (=) Letustaker € . Then we can writer = ab~! for somea, b € R with b # 0.
Since R is a valuation domain, we have? C bR or bR C aR, i.e.,a = bry, Orb = ary
for somer;, 7, € R. Thereforeg = brib™! = ry orz = aa™'r,' = ry !, thatis,x € R or
7t e R.

(<) Let us take any two elementsb € R, and setr = ab~! € Q. Then, by assumption,
xr € Rorxz™! € R. So, we haves € bR orb € aR. Thus,R is a valuation domain. O



Example 3.1 The localizationz, = {pk% €EQ:ptbptak e ZtU{0}} of the ring of
integers at a prime idealZ is a valuation domain:
Let us take two different elemenis = p’“%,qQ = pk2§ € Zy. If ki > ko, then

d . b T

Q= qukl—@(;;— orif ky > kq, theng, = qlpk2—k1§—. So, for the principal ideal$g;) and
C a

(g2) of Z,,, we have(q;) C (gz2) of (¢2) C (q1). ThereforeZ, is a valuation domain.

Remark 3.1 (1) A valuationringR is local, i.e.,R has a uniqgue maximal ideal.

(2) If Ris avaluation ring and/ ¢ R is an ideal ofR, thenR/I is a valuation ring as

well.

(3) If Ris a valuation ring andS & R is a multiplicatively closed subset &f such that
0¢ Sandl e S, thenS~!Ris avaluation ring as well.

Lemma 3.1 ( (L. Fuchs & L. Salce), Lemma 11.1.3) For a valuation domaipwe have:
(a) finitely generated ideals are principal;
(b) the only principal ideals which can possibly be primes &rand0;

(c) foraproperideall of R, either/™ = 0 for somen € N or the intersectio/ = (1), . 1"

is a prime ideal ofR.

Before we prove a fact, we need to remember an important lemieh is called
Nakayama’'s Lemma: Let/ be a finitely generated&-module and | an ideal contained in
the Jacobson radical @, i.e., contained in the intersection of all maximal idedisfio If
IM = M, thenM = 0.

Lemma 3.2 Let R be a valuation domain with the maximal idedl. Then:

(&) Ris Noetherian, but not Artinian if and only if its non-zereals are: R > M = pR >
...>p"R > ...forn € N. In this caseR is a principal ideal domain;

(b) Ris Artinian if and only if it has finitely many ideals which at principal: R > M =
pR>...>p"R=0forsomep € Randn € N.

Proof To prove (a), supposgE is Noetherian. Then each ideal &fis finitely generated.
So, by Lemma 3.1(a)R is a principal ideal domain. Thus, the maximal idéal= pR for
somep € R. Now, we need to show that any non-zero proper idegfl R is of the formp” R.
Also, sinceR is a principal ideal domain, there is an elemerg R such that’ = aR. Then
a € M = pR, i.e.,a = pa, for somea; € R. If a; is a unit of R, thenp = aafl which
implies that! = aR = pR = M. If a; is not a unit of R, thena,; € pR, i.e.,a; = pas
for somea; € R. Furthermore, if we proceed this pattern, we will have a rcladiideals

10



I =aR & 1R & asR & .... ldeals in the chain are not equal becausg,ik = a, 11 R
thena, = pa,,,. However, by Nakayama’'s Lemma,R = Ma, 1 R impliesa, = 0, i.e.,
an+1 = 0. So,I = 0, which is impossible. Sinc& is Noetherian, this chain must terminate
atanideah, R, i.e.,a,R = a,. 1R = ... for somen € N. This can only happen whe is a
unit in R. Then we have = p™a,,. Hence,l = aR = p™R. Conversely, the assumptions on
R satisfies the maximum condition on idealsidfClearly, R is Noetherian.

To prove (b), supposeg is Artinian. Then, because of the fact that Artinian rings ar
Noetherian, by (a)R has ideals of the fornrk > M = pR > ... > p"R > ...forn € N.
This chain must terminate at a finite step, iB.> M = pR > ... > p"R = p"™! = ...
for somen € N, sinceR is Artinian. p"R = p" ™' R gives the equalitp™ = p"*'r for some
r € R. Thenp™(1—pr) = 0. Consequentlyy™ = 0 sincel — pr is a unit by definition of local
ring. Thus,R has finitely many ideals which are principdt: > M =pR > ... > p"R =10
for somen € N. Conversely, the assupmtions @rsatisfies the minimum condition on ideals
of R. Hence,R is Artinian. O

Definition 3.2 An R-module) is called uniserial if all submodules af are totally ordered
under inclusion, in other words; for ath,, m, € M, eitherm; R < moR or myR < mR.

Lemma 3.3 ( (L. Fuchs & L. Salce), Lemma 11.1.4) R is a valuation domain, then
(a) its quotient field?) is a uniserial R-module;
(b) every proper submodule &f is a fractional ideal ofR.
Definition 3.3 An overring ofR is a subring of the quotient fiel@ of R which containg?.

Proposition 3.3 ( (L. Fuchs & L. Salce), Proposition 11.1.5) Lét be a valuation domain. A
subring S of Q is an overring ofR if and only ifS = Rp for some prime ideaP of R. Itis

necessarily a valuation domain.

3.2. Valuations

Definition 3.4 Let K be a field,G a totally ordered abelian group, ansb a symbol which is
regarded to be larger than any elementtaf We set for every € G, g + oo = 00 4 00 = 0.
Thenamap : K — G U oo is said to be a valuation if it satisfies:

V1. v(z) = oo forz € K if and only ifx = 0;

V2. v(z.y) = v(z) +v(y) forall z,y € K;

11



V3. v(xz + y) > min{v(z),v(y)} forall z,y € K.

The subsef?, = {z € K|v(x) > 0} of K is a ring, which is called thgaluation
ring of v, the maximal ideal of?, is given by the seP, = {z € K|v(z) > 0}. Moreover,GG
is called thevalue group of R, and the rank o€~ is therank of the valuation ringR.

If the value group is isomorphic to the additive group of integeéfsthen the val-
uationv is calleddiscrete valuation, and the valuation ring?, is calleddiscrete valuation

ring.

Remark 3.2 a|b holds for two elements, b of R, if and only ifv(a) < v(b):

Sincealb, b = ar for somer € R. Thenv(b) = v(a) + v(r), and hence(b) > v(a).
Conversely, it:(b) —v(a) > 0, thenv(ba™') > 0implying thatba=! € R, and hencéa™! = r
for somer € R, thatisb = ar for somer € R. Thus,a|b.

Theorem 3.1 ( (L. Fuchs & L. Salce), Theorem I1.3.1) Every valuation doma is the val-
uation ring R, of a valuationv of its quotient field.

Proof Let R be an integral domain with the quotient fi€ld The set of invertible elements
of R, which is denoted by/, is a subgroup of the multiplicative grodp*. SettingalU < bU
fora,b € Q* if and only if ba=! € R shows that the grou@’ = Q* /U becomes a partially
ordered abelian group. The positive element&/dfy the partial order £” correspond to the
cosetsulU, wherea € R. Also, the canonical surjection: Q* — G satisfiesv(a) > v(c)
andv(b) > v(c) implying thatv(a + b) > v(c) for a,b,c,a + b € Q*, soc|a andc|b imply
c|(a+0). If we had taken the domaiR as a valuation domaiid; would have become a totally
ordered group since fal/, bU <€ G, wherea,b € Q*,ab™! € R, oritsinverser~'b € R, i.e.,
alU < bU orbU < aU. Furthermore, we would rather view the operation(omas addition,
and we could extend to by definingv(0) = co. Thenw clearly satisfies the properti®d.,
V2 andV3, and the corresponding ring, coincides with the domairk. OJ

Example 3.2 The mapv : Q — Z defined by (p"¢) = n, wherep is a prime integer and
a,b € Z such that gcthb, p) = 1, is a valuation onQQ. The valuation ringk, = {x €
Qlv(z) > 0} = {z € Q|z = § with gcda,b) = 1 andp 1 b}, wherea, b € Z, coincides with
the localizatiorz, of the ring of integers at a prime idegL..

Lemma 3.4 ( (L. Fuchs & L. Salce), Exercise 11.3.2) Lebe a valuation of a field{ and R,
its valuation ring. Then:

(@ v(z) =0ifand only ifz is a unitinR,;
(b) forz,y € K v(z) =v(y)ifand only ifzR, = yR,;
(c) K isthe quotient field of?,.
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Proof To prove (a), firstly we need to see thatl) = v(1.1) = v(1) + v(1) implies
v(1) = 0. Then0 = v(1) = v(zz™') = v(z) + v(z™!) impliesv(z™!) = —v(x). So, if
v(z) = 0, then—v(z) = v(z~!) = 0. Thus, bothr andz~! are elements oR,, i.e. z is a
unitin R,. Conversely, by assumption,c R, andz~! € R,. Then we have(z) > 0 and
v(z~') > 0. However,—v(z) = v(z~!). This means that either(z) < 0 orv(z~!') < 0.
Thereforep(z) = 0.

By Remark 3.2, we have(z) = v(y) if and only if 2 = ry andy = sz for some
r,s € R,,i.e.,,xR, C yR, andyR, C zR,. This proves (b).

To prove (c), let us take a non-unit element R,. Thenuv(r) > 0. So,—v(r) =
v(r~1) < 0. Thereforey~! € K. Also, for each non-zerg € K, by definition of valuation,
we havev(q) > 0 oruv(q) < 0,i.e,q € R, orq” ! € R,. Hence,K is the quotient field of
R,. O

Theorem 3.2 Let R be a valuation domain with the maximal idedl. ThenR is a discrete
valuation domain if and only if it is Noetherian.

Proof Letwv be the valuation of? having value groufZ.. There exists an element € M
such thaw(m) = 1. For a non-zero elementc M, v(z) is a positive integer, say(z) = n,
n € Z*. Thenv(z) — nv(m) = v(zm™") = 0, i.e.,z = m"u for some unitu of R. So,
M = mR. LetI be a non-zero proper ideal éf. Then{v(a)|0 # a € I} is the set of
positive integers, and it has a smallest element,ksady > 0. Then there exists an element
x € I such thaw(z) = k. Thenl = xR = m*R. Therefore,R is a principal ideal domain,
so it is Noetherian. Conversely, by Lemma 3.2 (a), we carevihié maximal ideaMl = mR
fo somem and for every non-zero elmentc R, there isk € Z such thauR = m*R, i.e.,
a € m*R, buta ¢ m*T1R. Then we can set(a) = k which implies that ifa, b, ¢, d € R with
ab™! = cd! thenv(a) — v(b) = v(c) — v(d). Therefore, setting(q) = v(a) — v(b), where
g=ab™! € Q, givesamap : Q — Z. It can be easily seen that this majs a valuation of
2 whose valuation ring i€ with value groupZ. So, R is a discrete valuation ring. OJ

3.3. More on Valuation Domains

In this section we give some connections between integetdised domains and val-
uation domains.

First of all, a valuation domain is integrally closed sintésia GCD-domain by its
definition. This fact gives us an important theorem on irdédgiclosed domains.

Theorem 3.3 ( (L. Fuchs & L. Salce), Theorem 1.3.6) An integral domdins integrally
closed if and only if? is the intersection of its valuation overrings.
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Proof Supposer is integrally closed. To prove is the intersection of its valuation over-
rings, it is enough to show that for eache @@ — R there is a valuation overring at that
fails to containz. By Lemma 2.1 is not integral overz impliesz ¢ R[z~!']. Then owing
to Zorn's lemma, we can have an overriRg of R[z~!], which is maximal with respect to
the exclusion ofc. In order to prove thak* is a valuation domain, we will show that for any
non-zeroy € Q, eithery € R*, ory~! € R*,i.e.,xz € R*[y], orx € R*[y~']. Assume to the
contrary thaty, y—! ¢ R*, i.e., bothz € R*[y] andz € R*[y~!]. Then we have equations

r=ag+ay+-+ay,r=>by+ by 4+ Fbny "

wherea;,b; € R*,1 <i < n,1 < j < m, andn, m have been chosen as small as possible.
By symmetry, we may suppose > m. Also, sincex ¢ R*, neithera, = x norb, = .
Then if we multiply the second equation by, we getl = b, + bjy~' + - - + b, y~™ with

b, = bjz~" andbj # 1. Therefore(1 — b)y" = by ' +--- 4+ b;,y" ™. Then

r=a+ay+--+any”
(1~ by = (1~ boa ) (ao + aay + -+ 0,0
w—by = ap(l —bor™") + -+ auo1 (1= bor™ )y "+ an (1 — bz )y"

So, we can writer = co+c y+- - - cpy* for somek < n sincea,, (1 —byz~1)y" = a, (byy" '+
---+ b, y"~™). This gives a contradiction, thereforB; is a valuation domain, and from the
way of definingRR*, R is the intersection of those valuation domains. O

Definition 3.5 A x-operation onR is a mappingF’ — F* of F/(R) into F'(R) such that for
eachq e QandallA, B € R:

L (q)" = (q); (qA)" = ad",
2. AC A% if AC B,thenA* C B*,
3. (A% = A~
Moreover, an ideaM is called ax-ideal if A = A*.

Theorem 3.4 ( (R. Gilmer), Theorem 32.5) L&t be an integral domain with the quotient
field @, and assume thdtl; };c; is a family of overrings of? such that? = (", V. If Flis a
non-zero fractional ideal oR?, we define™ to be(,.,; F'V;. Then the mapping’ — F*is a
x-operation onk and F'V; = F*V; for each non-zero fractional ided of R and for eachi.
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Lemma 3.5 ( (R. Gilmer), Lemma 32.17) F — F* is ax-operation on an integral domain
R and if A is an invertible fractional ideal of?, then for eachB € F'(R), (AB)* = AB*. In
particular, A* = (AD)* = AD* = A; that s, A is ax-ideal.

The group! (R) of all invertible fractional ideals is partially orderedder the order
A< Bifandonlyif B C A.

Proposition 3.4 ( (J. Brewer & L. Klingler, 2005), Proposition 1) Le® be an integrally
closed domain witHV;},c; a collection of valuation overrings at such thatk = ), V.
Denote byy; the valuation associated with}, and byG; the corresponding value group. Let
A= (ay,...,a,) be aninvertible fractional ideal of. Then the mapping

®: I(R) — ] | G: defined by

el

®(A) = (vi(A))ier = (min{vi(a;) r1<j<n)icr

is an order-preserving isomorphism frafiR) into [ [, ; G5, the cardinal product of thér;’s.
Proof We begin with by fixing notation. Led = (ay,...,a,) andB = (by,...,b,) be
invertible fractional ideals o2, wheren, m € N. Then fori € I, we havev;(A) = v;(a;@)),
where AV; = a;)V; for vi(a;;)) = min{vi(a:), ..., vi(a,))} andv;(B) = vi(bkw)), Where
BV; = by Vi for v; (b)) = min{v;(b1), ..., vi(bn))}

Firstly, we show tha® is order-preservingA > B if and only if A C B if and only
if A+ B = Bifandonlyif (A+ B)V; = BV, foralli € I'ifand only if v;(a;i)) > vi(bra))
foralli € I'ifand only if ®(A) > &(B).

Next, for eachi € I, we have

>J >l shv >

=J i x>

= vi(a;@)) + vi(br)) = vi(A) + vi(B),
then we also have

®(AB) = (vi(aj)) + vi(big) ier
(Ui(aj(i)))iel + (Ui(bk(i))iel
P(A) + ¢(B).
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Therefore® is a group homomorphism.
To show® is one-to-one, we first need to say thatife F(R), then by Theorem
3.4, the mapping” — (,.; F'V; is ax-operation. Letd, B € I(R). If ®(A) = ®(B), then
v;(A) = v;(B) for eachi € I, i.e., AV; = BV, for eachi € I. Then(,_; AV, = (,.; BV;.
However, by Lemma 3.5, we haw = (,.; AV; and B = (., BV; sinceA and B are
invertible. Hence® is one-to-one.
U
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CHAPTER 4

PRUFER DOMAINS

In this chapter we define Prifer domains and review the mestuli properties of
Prufer domains which are essential for our work. Additibndet R be a Prufer domain.
Then we give two significant approximation theorems fowhich give us an isomorphism
from the group of all invertible ideals @t ontothe cardinal direct sum of corresponding value
groups of valuation overrings @. For further information and proofs, we refer to (J. Brewer
& L. Klingler, 2005).

4.1. Fundamental Properties of Piifer Domains

Let R be an integral domain with the quotient figld

Definition 4.1 R is called a Piifer domain if its localization at a maximal ided&l,, is a

valuation domain for all maximal ideal&/ of R.

Theorem 4.1 ( (L. Fuchs & L. Salce), Theorem Ill.1.1) The following araua@lent for an

integral domainR:
(@) Ris a Prufer domain;
(b) every finitely generated non-zero fractional ideal is irni#e;

(c) the lattice of the fractional ideals @} is distributive: for fractional ideald, J, K of R,

INJ+K)=(InJ)+(INK);

(d) every overring of? is a Prifer domain.

Proof (a)=(b) Let! be a finitely generated and a maximal ideal ofR. Then/R,, is a
finitely generated ideal of the valuation domaiy,, sincel = Ra; + - - - + Ra,, implies that
S~ = S7'Ra; + - -- + S~'Ra, for a localization ofR at any multiplicative subsef of R.
Hence,l R, is principal; so, it is invertible. Then by Proposition 2/2s invertible.

(b)=(a) Let M be a maximal ideal of. We will show that given two elements

.S € Ry, wherea, b, ¢, d € Rand withb,d ¢ M, either} € () Ry or 5 € (%) Ry Clearly,
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it is enough to show that either € cR,; or ¢ € aR);. ThenaR,; + cR); is an invertible
ideal in the local domaik,,. Therefore, by Proposition 2.1(c), eitheR,; + cRy; = aR),
oraRy + cRy = cRys. This provesRk), is a valuation domain.

(a)=(c) We always haveInJ)+ (INK) < IN(J+ K) for fractional ideald, J, K
of R. Conversely, let us take an element I N (J + K). Thenz € [ andx € J + K imply
thatx € IRy, andx € JR); + K R); for any maximal ideal\/ of R. SinceR), is a valuation
ring, JRy € KRy ofr KRy C JRy. S0,z € (IRy N JRy) + (IRy + KRyy). Also,
since it is true for any maximal/, we haver € (INJ)+ (I N K).

(c)=(a) We need to show thdt,, is a valuation domain for any maximal ide@al of
R. Since the assumptions éhhold for any localization ofz, it is enough to show that a local
domainR’, which satisfies our assumptions, must be a valuation donfainalla,b € R/,
we haveuR' = aR'N (bR + (a —b)R') = (aR'NbR") 4+ (aR'N(a—b)R'). Thus,a = x +y
for somex € aR' N bR andy € aR N (a — b)R'. Then we can writgy = r(a — b) for
somer € R'. If r is not contained in the maximal ideal &f, thena — b = yr=! € aR/, so
b € aR'. If r is contained in the maximal ideal éf, then1 — r is a unitinR’. Therefore,
a=x+r(a—"0b)impliesthata(l —r) =2 —rb € bR',i.e.a € bR'. Hence,R' is a valuation
domain. This means thdt,, is a valuation domain for all maximal idealg of R.

(a)=(d) Let R’ be an overring o2 andM’ a maximal ideal of?’. ThenP = M'NRis
a prime ideal ofR. Let M be the maximal ideal ok which contains”. Then, by Proposition
3.3, Rp is a valuation domain sincgp is an overring ofR,,;. We claim thatRk,,, = Rp,
so thatR,, is a valuation domain an&’ is a Prufer domain. It is clear thdt, C R',.
Also, sinceRp is a valuation domain, by Proposition 3.3 agait,, is a localization ofRRp,
so thatR),, = R, for some prime ideal of R. Then, evidentlyL = M'R), N R =
MR, "R NR=M nNR=P.So,R'is aPrufer domain.

(d)=(a) Itis trivial sinceR is an overring of itself. O

Lemma 4.1 ( (L. Fuchs & L. Salce), Lemma 111.1.10) Létbe a finitely generated ideal of a
Prufer domainR. If I is an ideal contained i/, then/ = K.J with a unique idealK of R.

Proposition 4.1 ( (L. Fuchs & L. Salce), Proposition I11.1.11) If every firliggenerated ideal
of an integrally closed domaiR can be generated by 2 elements, tlieis a Prifer domain.

Remark 4.1 Let D be an overring of a Rifer domainR.
(@) AnidealJ of D satisfies/ = (J N R)D;
(b) If Lis aprimeideal ofD, thenP = L N Ris a prime ideal ofR, and D, = Rp;

(c) A prime idealP of R generates a proper ideal d? if and only if D < Rp;
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(d) The prime ideals ob are exactly the ideal® D, whereP is a prime ideal ofR such
that D < Rp;

(e) Any overringD satisfiesD = (1, ,,_,, Rp, WhereP is a prime ideal ofRz.

Definition 4.2 A domainR is called of finite character if every non-zero element, eaui

lently, every non-zero ideal @t is contained in but a finite number of maximal ideals.

We specialize Proposition 3.4 to Prifer domains and deterthe embedding defined

in Proposition 3.4 maps into the cardinal sum of thés.

Theorem 4.2 ( (J. Brewer & L. Klingler, 2005), Thoerem 2) L& be a Piifer domain with
{ M, };cr the collection of all maximal ideals dt. Denote by, the valuation associated with
the valuation ringR,,,, and byG; the associated value group. Létbe the same mapping

which is defined in Proposition 3.4. Then:
(1) The groupl (R) is lattice-ordered,;

(2) The mappingp is an order-preserving isomorphism frafR) into [ [, ; G, the cardi-
nal product of thez,’s;

(3) The domaink is of finite character if and only i maps/ (R) into][,., G;, the cardinal
sum of th&7;’s.
Proof (1) LetA=aR+---+a,R, B=bR+---b,R € I(R). SinceR is a Prufer
domanA+B=a R+ ---+a,R+bR+---+ b, Risinvertible, and it is the infimum of
B. Thus,I(R) is filtered. Then by Theorem 2.3(R) is lattice-ordered.

(2) Since Prufer domains are intersection of their vabravverrings, i.e., a Prufer
domainRk = (,.; Ru,, WherelM;’s are maximal ideals o, Priifer domains are integrally
closed by Theorem 3.3. Therefore, the claim follows fromg®@sition 3.4.

(3) The Prufer domairr is of finite character if and only if each non-zero finitely
generated ideal = (aq,...,a,) Of R is contained in finitely many maximal ideals of
R. However, A is also an invertible ideal sinc& is a Prufer domain. Then the invert-
ible ideal A of R is contained in only finitely many maximal ideals &f if and only if
®(A) = (min{v;(a;) }1<j<n)icr has finitely many non-zero indices, i.&(A) € [[,.,; G;. O
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4.2. Approximation Theorems for Prifer Domains

We determine the embedding defined in Proposition 3.4 roapsthe cardinal sum
of the G;’s for a Prufer domairr if and only if the "Strong Approximation Theorem” holds
for R.

Definition 4.3 Two valuation ringsl” and W with the same quotient fiel@ are said to be
independent if and only i and 1V generate the field), i.e., there does not exist a valuation
ring U C @ suchthat C U andW C U.

Proposition 4.2 ( (J. Brewer & L. Klingler, 2005), Proposition 3) L&t be a Piifer domain
with { M}, the collection of all maximal ideals dt. Denote by, the valuation associated
with the valuation ringR,,;, and byG; the associated value group. Then the following are
equivalent:

(1) The valuation ringg Ry, }icr are pairwise independent;
(2) Each non-zero prime ided? of R is contained in a uniqgue maximal ideal Bf
(3) D/P is avaluation ring for each non-zero prime idellof R;

(4) The "Strong Approximation Theorem” holds for elementdinthat is, for every finite
collection of maximal ideal§ M, ..., M,} of R, and every choice of non-negative
elementg); € G;, there is an element € R such that;(r) = g; for 1 <i <n.

Definition 4.4 An integral domainR is an h-local domain if? is of finite character and each
non-zero prime ideal ok contained in a unique maximal ideal &f

Now, we can claim a stronger version of Proposition 4.2.

Proposition 4.3 ( (J. Brewer & L. Klingler, 2005), Proposition 4) L&t be a Piifer domain
with { M, };<; the collection of all maximal ideals @f. Denote by, the valuation associated
with the valuation ringR,;, and byG; the associated value group. Then the following are

equivalent:
(1) Ris h-local;

(2) The "Very Strong Approximation Theorem” holds for finiteBrgerated ideals aR; that
is, for every finite collection of maximal ideafd/, ..., M, } of R, and every choice
of non-negative elemenis € G;, there is a finitely generated ideal of R such that
v;(A) = g; for 1 <i <n,andv;(A) = 0 for all other maximal ideals\/; of R.
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Moreover, when these equivalent conditions hold, the findenerated ideal in (2) can

always be chosen to be 2-generated.

By Theorem 4.2, the mapping defined in 3.4 is an isomorphism from the group of
all invertible fractional ideals of a Priufer domaihinto the cardinal sum of7;’s if and only
if R is of finite character, and by Proposition 4d8mapsontothe cardinal sum of7;’s if and

only if Ris h-local. So, we can claim the next theorem.

Theorem 4.3 ( (J. Brewer & L. Klingler, 2005), Theorem 5) L& be a Piifer domain with
maximal ideals{ M, },c; and corresponding value grougs:; }.c;, and let® be the mapping
defined in Proposition 3.4. Theh is an isomorphism from the grouff R) of invertible
fractional ideals ofR onto the cardinal direct surh[,_, G; if and only if R is h-local.
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CHAPTER 5

KRULL DOMAINS

In this chapter we review fundamental properties of Krulindins and we investi-
gate if we can prove a "Strong Approximation Theorem” and ar{\Strong Approximation
Theorem” for Krull domains.

5.1. Fundamental Properties of Krull Domains

Definition 5.1 An integral domaink is a Krull domain if

K1 R =)
domains, and

. Vi, Where thel;’s are overrings ofi? which are discrete rank 1 valuation

K2 every non-zero elemeate R is invertible in almost all of thé’;’s.

Lemma 5.1 ( (L. Fuchs & L. Salce), Exercise 11.1.12) A discrete rank luaéion domain is
completely integrally closed.

Proof Let R be a discrete rank 1 valuation domain. &ds a Noetherian valuation domain
aswell. Let0 # x € @, which is the quotient field ok, be almost integral ovek. Then there
existsr € R such thatz” € R for alln € N. Then the ideald = (rx,raz?,...,ra",...)
is a finitely generated ideal d® since R is Noetherian. Therefored = (rz*, ... raf»),
wherek,,....k, € N. So, we can write:z* as a combination of generators dffor any
k € N. By choosingk > k;,1 < i < n, we havera* = a;rz® + --- + a,ra*. Hence,
0 = —a2F + ayz™ + --- + a,2%, i.e., z is integral overR. SinceR is intersection of its
valuation overringsR is integrally closed, and consequentlye R. Thus,R is completely
integrally closed. O
Lemma 5.1 shows that a Krull domain is completely integralsed. Therefore, by
Theorem 2.2, the lattice-ordered mona@idR) of the divisors ofR is a lattice-ordered group.
Since every overrind; in (K1) is a discrete rank 1 valuation domain, there exists a
valuationv; : @ — Z U {0} such thatl; = R,, = {z € Q|v;(z) > 0}. Furthermore, for a
non-zero fractional ideal € F'(R), we will setv;(I) = max{v;(¢)|q € Q,I < qR}.

Lemma 5.2 ( (L. Fuchs & L. Salce), Lemma IV.1.2) For a non-zero fractibieal / of a
Krull domain R, v;(I) = 0 holds for almost all indices € A.
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By Proposition 2.3(c), we have(I) = v;(l,). Using this property and Lemma 5.2,

we have the following lemma.

Lemma 5.3 ( (L. Fuchs & L. Salce), Lemma IV.1.3)Afis a Krull domain, then the mapping
¢ : D(R) — @, Zi, Z; = Z, defined by letting;(I) be thei-th coordinate ofp(div([7)), is
an order-isomorphism of the lattice-ordered group of divial ideals I of R with a subgroup
of the pointwise ordered lattice-ordered grodp, ., Z;.

Theorem 5.1 ((L. Fuchs & L. Salce), Theorem IV.1.4) The following coiodis on a domain
R are equivalent:

(8 Ris aKrulldomain;

(b) R is completely integrally closed and satisfies the ascencliagn condition on diviso-
rial ideals;

(c) the groupD(R) of divisors is a free abelian group with basiin D(R)*, lattice-
ordered by the pointwise ordering.

Proof (a)=-(b) A Krull domain is already completely integrally closdgly Lemma 5.3, an
ascending chaid; < I, < ... < I, < ... of divisorial ideals ofRR corresponds bijectively
to a decreasing chain of strictly positive elementgBn. , Z;, i.e.,v;(11) > v;i(ly) > ... >
v;i(I,) > ... for eachi € A. Since@,., Z; is lattice-ordered, the latter chain contains a
minimal element. Thus, the chain of divisorial ideals hasaximal member.

(b)= (c) Theorem 2.2 guarantees tliatR) is a latticed-ordered abelian group. Then
the maximum condition on divisorial ideals translates thi&minimum condition on positive
elements ofD(R) via the order reversing bijectioh— div(/) and followed by the mapping
¢ in Lemma 5.3. Therefore, by Theorem 2I4R) = D c\pi, o+ VZ-

(c) = (a) By assumptions o (R), for every0 # ¢ € (), we can write

divig) = > wg)y,

~vEMin D(R)*

where thew, (¢q) are integers uniquely determined hyand almost all ofw,(¢)’s are zero
since D(R) is free. Then from the relationtiv(qq’) = div(q) + div(¢’) anddiv(q + ¢') >
inf(div(q), div(¢’)) for non-zerog, ¢’ € @), we conclude that each, defines a discrete rank
1 valuation of@. Furthermoreg € R if and only if div(¢) > 0 if and only if w.(¢g) > 0 for
all v € Min D(R)*. This guarantees thadt = 1 .\;;, p(r+ W>, WhereW, is the discrete
rank 1 valuation domain defined by the discrete rank 1 vajuoati,. Therefore, the property
(K1) holds for R. Moreover, sinceD(R) is a free abelian groupy.(¢) = 0 for almost all
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~ € Min D(R)™", which shows that the property (K2) holds fras well. HenceR is a Krull
domain. ]

The discrete rank 1 valuations, and the discrete rank 1 valuation domalifis, which
are defined in the proof of Theorem 5.1, are cadledential valuationsandessential valua-
tion overrings of the Krull domainR, respectively.

Corollary 5.1 ( (L. Fuchs & L. Salce), Corollary IV.1.5) A Noetherian domas a Krull
domain if and only if it is integrally closed.

Proposition 5.1 ( (L. Fuchs & L. Salce), Proposition 1V.1.6) Lét be a Krull domain and
D(R) its group of divisors. For each € MinD(R)™, let P, be the maximal proper divisorial
ideal, w, the essential valuation d? associated withy, andV., the corresponding valuation

ring. Then:
(@ P, is aprime ideal of? andW, = Rp_;
(b) {P,|y € MinD(R)*} is the set of minimal prime ideals &f.

Proposition 5.2 ( (L. Fuchs & L. Salce), Exercise 1V.1.4) LBtbe a Krull domain. LetS be
a submonoid of?*. ThenS~'R = ({W,|y € Min D(R)*,w,(s) = 0 forall s € S}, and
S~'Ris a Krull domain.

Proof Letrs™! e S™'R, wherer € Rands € S. Thenw,(rs™) = w,(r) — w,(s) =
w~(r) > 0if w,(s) = 0. Therefore,S~'R C ({W,|y € Min D(R)", w,(s) = 0 for all
s € S}. Conversely, take an elementc ({W,|y € Min D(R)*,w,(s) = 0 for all s € S}.
Now, define the sefiV,|a € Min D(R)",w,(s) > 0 for somes € S}. Then there exist
finitely many elemetsy, ..., a, of Min D(R)* such thatw,,(z) < 0 sinceR is a Krull
domain, and: = r;r, ' for some non-zere,,r, € R. Also, for eachn;, there exists; € S
such thatw,, (s;) > 0. Choosing a positive integér large enough such that,, (s¥z) > 0
and settings = (s;---s,)", we havews(sz) > 0 for all 3 € Min D(R)*. So,sz € R
which impliesz € Rg sinces € S. Hence,5 'R = ({W, |y € Min D(R)", w,(s) = 0 for
all s € S}. Furthermore, this ensures that K1 and K2 hold$or R. So,S~ 'R is a Krull
domain. O

Since a Krull domainR is the intersection of its valuation overrings?,is also an
integrally closed domain. Thus, we can specialize Projoosi.4 for Krull domains.

Proposition 5.3 Let R be a Krull domain with{ P; },<; the collection of all minimal ideals of
R. Denote by, the associated valuation with the valuation rilg, and byZ, the associated
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value group. Letd = (a4, ..., a,) be an invertible fractional ideal oR. Then the mapping

®: I(R) — ] [ Z: defined by

el

D(A) = (vi(A))icr = (min{vi(aj)}léjén)iel

is an order-preserving isomorphism frofR) into [ [, , Z;, the cardinal sum of th&,’s.

Proof By Proposition 3.4, is already an order-preserving isomorphiswo [],_; Z;.
Let A € I(R). ThenA = (ay,...,a,) for somea,,...,a, € A. By (K2), v;(A) =
min{v;(a;)}1<j<n = 0 in almost all of theV;’s. This meansbd(A) has finitely many non-
zero indices. Sop(A) € [],.; Z;. Therefore® mapsinto [ [, _; Z;. O

5.2. Approximation Theorems for Krull Domains

There is already an approximation theorem for a Krull donfaii his approximation
theorem gives an element in the quotient fi@ldvhich satisfies the required assumptions on
R. However, we have proved that the "Strong Approximationdreen” holds for elements
in R. It gives us a progression to define another approximatieortm for finitely generated
fractional ideals ofR:.

Proposition 5.4 ( (L. Fuchs & L. Salce), Proposition IV.1.7) Let;,--- ,w, be different

essential valuations of a Krull domaiR, and z,...,2, € Z. There exists an element
q € @ such thatw;(q) = z forall i = 1,...,n, andw(q) > 0 for all essential valuations
W F Wy, ..., Wy

Proposition 5.5 Let R be a Krull domain with{ P; };<; the collection of minimal prime ideals
of R. Denote byy; the valuation associated with the valuation riikp, and byZ; the asso-
ciated value group. Then the "Strong Approximation Thedrholds for elements inR; that
is, for every finite collection of minimal prime idedl#, ..., P,} of R, and every choice of
non-negative elements € Z;, there is an element€ R such thaw;(r) = z; for 1 <i < n.

Proof Firstly, we claim that given distinct minimal prime ideas Py, . .., P, of R with
corresponding valuations vy, . . . , v, and given non-negative valuef v, there is an element
r € Rsuchthaw(r) > z andv;(r) = 0,1 < i < n.

Let = be a non-negative value of We know that? — | J"_, P; # @ sinceP, P, ..., P,
are distinct minimal prime ideals. Therefore, we can chaoseP — |J_, P;. Now, since

25



v(c) > 0, there exists a positive integérsuch that(c*) > 2. Moreover, since: ¢ P,
1 <i < n,we also have;(c*) = k.v;(c) = 0. Hence, the requiredis c* for the claim.

Now, let zq, ..., z, be non-negative elements @f,...,Z,, respectively. By the
claim, for each, we can choose; € R such that;(r;) > z; and for allj # i, v;(r;) = 0. Let
c1,...,0, € Rbesuchthat;(c;) = z;,1 <i <n,and set

Then forl < < n, we get

vi(bi) = vilei) +vi(ry) + - -+ vi(rica) +vi(riea) + - F i) = 2

sincev;(r;) = 0 for j # i. Also, for j # i, we have

vi(bi) = vj(ci) + -+ vi(rica) + v (risa) + -+ + v;(ra)

=v;(¢;) +v(r;) > vi(ry) > 2.

Finally, if we seth = b, + - - - + b,, we getv;(b) = v;(b;) = 2;, vi(b;) > z; for j # 1.
U

Corollary 5.2 Let R be a Krull domain with{ P}, ; the collection of minimal prime ideals of
R. Denote by, the valuation associated with the valuation riig, and byZ, the associated
value group. Then the valuation ring$p, },c; are pairwise independent.

Proof Let P, and P, be distinct minimal ideals o2 andq a non-zero element ap. If
v1(q) > 00ruvy(q) > 0, theng € Rp, orq € Rp,. SO, suppose that (¢) < 0 andwvy(q) < 0.
By the Strong Approximation Theorem, there exists an eléemea R such thatv,(r) =
—v1(q) andwy(r) = 0. Then we can writg = (¢r)r~!. Sincev,(qr) = vi(q) + vi(r) = 0,
qr € Rp,. Also,vy(r~1) = —uy(r) implies that-—! € Rp,. O

Furthermore, we have proved that the "Very Strong ApproxiomaTheorem” holds
for finitely generated fractional ideals of a Krull domdin

Proposition 5.6 Let R be a Krull domain with{ P, },.; the collection of minimal prime ide-
als of k. Denote byv; the valuation associated with the valuation rifity, and byZ,; the
associated value group. Then the "Very Strong Approxinmafibeorem” holds for finitely
generated ideals aR; that is, for every finite collection of minimal prime idedl®,, ..., P, }
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of R, and every choice of non-negative elements 7Z;, there is a finitely generated ideal
A of R such thaty;(A) = z; for 1 < i < n and andv;(A) = 0 for all other minimal prime
ideals P; of k. Moreover,A is two-generated.

Proof By Proposition 5.5, the Strong Approximation Theorem hdtatsKrull domains,
so we can find an elemente R such thatv;(r) = z; for 1 < i < n. By the definition
of Krull domain, we have finitely many other minimal prime &g Py, ..., P, of R with
corresponding valuationsy, . . ., w,, such thatv;(r) > 0 for 1 < j < m. By the Strong
Approximation Theorem again, we can find an elemén& R such that;(r’) = z; and
w;(r') = 0. Then the idealr, r’) is the required ideal. O
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CHAPTER 6

CONCLUSION

Let R be an integrally closed domain, and denote/bit) the multiplicative group of
all invertible fractional ideals oR. Let{V;};c; be the family of valuation overrings d@t, and
denote byG, the corresponding value group of the valuation domdinWe showed that if
R = (0,¢; Vi then is a map fromf (R) into [],.; G;, the cardinal product of th&;’s. Fur-
thermore, it is well known whef is a Dedekind domain, this map becomes an isomorphism
onto]],., G, the cardinal sum of thé';'s. In this case(+; = Z for each.

It is shown, by J. Brewer and L. Klingler, that this map is adspbisomorphisnonto
[I;c; Gi whenR is an h-local Prifer domain by using two approximation teews. In this
thesis, we showed that such a map exists and that it is mgeathenR is a Krull domain.
Furthermore, we reformed these approximation theoremKraif domanins, which helped
us to gain further insight about Krull domains.
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