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ABSTRACT

APPROXIMATION THEOREMS FOR KRULL DOMAINS

Let R be an integrally closed domain, and denote byI(R) the multiplicative group

of all invertible fractional ideals ofR. Let {Vi}i∈I be the family of valuation overrings of

R, and denote byGi the corresponding value group of the valuation domainVi. We show

thatR =
⋂

i∈I Vi, and there is a map fromI(R) into
∏

i∈I Gi, the cardinal product of the

Gi’s. Furthermore, it is well known whenR is a Dedekind domain, this map becomes an

isomorphismonto
∐

i∈I Gi, the cardinal sum of theGi’s. In this case,Gi
∼= Z for eachi. It is

shown, by J. Brewer and L. Klingler, that this map is also an isomorphismonto
∐

i∈I Gi when

R is an h-local Prüfer domain. In this thesis, we investigatethe existence of such a map, and

whether it is injective whenR is a Krull domain.
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ÖZET

KRULL TAMLIK B ÖLGELEṘI İÇİN YAKLAŞIM TEOREMLERİ

R bir tamsayıca kapalı tamlık bölgesi olsun veI(R), R’nin terslenebilir kesirli ideal-

lerinin çarpımsal grubunu belirtsin.{Vi}i∈I , R’nin valüasyon üsthalkalarının ailesi olsun ve

Gi, Vi valüasyon tamlık bölgesine karşılık gelen değer grubunu belirtsin. BizR =
⋂

i∈I Vi

eşitliğini veI(R)’denGi’lerin kardinal çarpımının içine, yani
∏

i∈I Gi’nin içine bir fonksiyon

olduğunu gösterdik.R bir Dedekind tamlık bölgesi olduğunda bu fonksiyonunGi’lerin kardi-

nal toplamına, yani
∐

i∈I Gi’ye örten bir izomorfizma olduğu bilinmektedir. Bu durumda her

bir i için Gi tam sayılar grubuna izomorftur.R bir h-yerel Prüfer tamlık bölgesi olduğunda

bu fonksiyonunGi’lerin kardinal toplamına örten bir izomorfizma olduğu J.Brewer ve L.

Klingler tarafından gösterilmiştir. Bu tezde,R bir Krull tamlık bölgesi olduğunda böyle bir

fonksiyonun varlığı ve birebirliği araştırılmıştır.
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CHAPTER 1

INTRODUCTION

Throughout this thesis,R is an integral domain with quotient fieldQ unless otherwise

stated. We will denote byF (R) the multiplicative monoid of all fractional ideals ofR and by

I(R) the multiplicative group of all invertible fractional ideals ofR.

Definition 1.1 A Dedekind domain is a Noetherian, integrally closed, integral domain of

Krull dimension 1, i.e., every non-zero prime ideal is maximal.

If R is a Dedekind domain, then all fractional ideals ofR are invertible, i.e.F (R) =

I(R). Furthermore, if{Mi}i∈I is the set of all maximal ideals of a Dedekind domainR, then

each non-zero fractional ideal ofR can be written uniquely in the formA = M
zi1
i1

· · ·M
zin
in

,

and the mappingA → (zi1 , . . . , zin) is an order isomorphism fromI(R) onto the cardinal

sum
∐

i∈I Zi, whereZi
∼= Z for eachi.

If R is the ring of integers, then any idealmZ of Z can be written in the formmZ =

(p1Z)z1 · · · (pnZ)zn , wherem = pz11 · · · pznn , z1, . . . , zn ∈ Z, andp1, . . . , pn are different prime

integers. This is a well-known example of the above fact about Dedekind domains.

One can drop both the Noetherian and the one-dimensional assumptions and consider

I(R) whenR is a Prüfer domain of finite character. A similar fact will become true if any non-

zero prime ideal ofR contained in one maximal ideal ofR. It was proven by James Brewer

and Lee Klingler in the paper ”The Ordered Group of Invertible Ideals of a Prüfer Domain of

Finite Character” by using two important approximation theorems for Prüfer domains.

In Chapter 2 we mention about fundamental properties of fractional ideals, integrally

and completely integrally closed domains which will be useful for our work. We also give

the definitions and some specific properties of totally ordered and lattice-ordered groups. For

further information and proofs we refer to (L. Fuchs & L. Salce), (M.F. Atiyah & I.G.

Macdonald), (R. Gilmer).

In Chapter 3 we give definitions and properties of valuationsand valuation domains. In

addition, we give the fact that every integrally closed domain is the intersection of its valuation

overrings. This fact gives us an order-preserving isomorphism from I(R) into
∏

i∈I Gi, the

cardinal product of value groups of valuation overrings of an integrally closed domainR.

In Chapter 4 we give the definition and properties of Prüfer domains. Also, we give the

”Strong Approximation Theorem” and the ”Very Strong Approximation Theorem” for Prüfer

domains which are used to prove that there is an isomorphism from the group of all invertible

1



fractional ideals ofR onto the cardinal direct sum of value groups of valuation overrings of

R, whereR is a Prüfer domain, if and only if every nonzero element ofR is contained in but

a finite number of maximal ideals and every nonzero prime ideal of R is contained in only

one maximal ideal. For further information and proofs we refer to (J. Brewer & L. Klingler,

2005).

In Chapter 5 it is proven that a Krull domainR is the intersection of its discrete rank

1 valuation overrings, which are exactly the localizationsof R at its minimal prime ideals.

Furthermore, we have defined and proved the ”Strong Approximation Theorem” and the ”Very

Strong Approximation Theorem” for Krull domains.
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CHAPTER 2

PRELIMINARIES

This chapter consists of some preliminary information about fractional ideals and in-

tegral dependence. Also, totally ordered and lattice-ordered groups structures ,which are used

in following chapters, are given.

2.1. Fractional Ideals

Let R be an integral domain with the quotient fieldQ.

Definition 2.1 A fractional ideal of an integral domainR is anR-submoduleJ of Q such

thatrJ ≤ R for some non-zeror ∈ R.

Remark 2.1 (1) AnR-submodule ofQ is a fractional ideal if and only if it is isomorphic

to an ideal ofR.

(1) The ideals ofR are clearly fractional ideals, and they are called integralideals.

(3) A finitely generated submodule ofQ is a fractional ideal.

ForR-submodulesI andJ of Q, we already have two binary operations; sum ofI and

J , I+J and intersection ofI andJ , I ∩J . In addition, we define two more binary operations,

which are called the product and the residual, respectively:

IJ = {
n∑

i=1

aibi|ai ∈ I, bi ∈ J, n < w} andI : J = {a ∈ Q|aJ ≤ I}.

We list a few properties of the operations mentioned above. Let I, J andK beR-

submodules ofQ; then:

(i) I(J +K) = IJ + IK;

(ii) I : (J +K) = (I : J) ∩ (I : K);

(iii) (I ∩ J) : K = (I : K) ∩ (J : K);

(iv) (I : J) : K = I : JK = (I : K) : J ;

3



(v) I(IJ : I) = IJ ;

(vi) (I ∩ J) + (I ∩K) ≤ I ∩ (J +K);

(vii) I(J ∩K) ≤ IJ ∩ IK;

(vii) (I : K) + (J : K) ≤ (I + J) : K.

Furthermore, properties (i), (ii) and (iii) can be extendedto infinite sums and infinite

intersections:

(i)′ I(
∑

λ∈Λ Jλ) =
∑

λ∈Λ IJλ;

(ii) ′ I : (
∑

λ∈Λ Jλ) =
⋂

λ∈Λ(I : Jλ);

(iii) ′ (
∑

λ∈Λ Jλ) : I =
⋂

λ∈Λ(Jλ : I).

The set of all non-zero fractional ideals ofR is denoted byF (R), and it becomes a

multiplicative monoid with the associative binary operation product and the identity element

R.

Definition 2.2 A non-zero fractional idealI of R is said to be invertible if it is invertible as

an element of the multiplicative monoidF (R). In other words, there exists aJ ∈ F (R) such

that IJ = JI = R.

The inverse of a fractional idealI of R is unique and denoted byI−1. The set of all

invertible fractional ideals ofR is denoted byI(R), and it becomes a multiplicative group

which is a submonoid of the monoidF (R).

Definition 2.3 A ring R is a local ring if it has only one maximal ideal, equivalently, if r or

1 − r is a unit for anyr ∈ R. In addition, ifR has finitely many maximal ideals, then it is

called a semilocal ring.

Proposition 2.1 ( (L. Fuchs & L. Salce), Proposition I.2.5) LetI be an invertible fractional

ideal of a domainR. Then:

(a) I−1 = R : I;

(b) I is finitely generated;

(c) if R is semilocal, thenI is a principal ideal; moreover, ifR is local, every generating

set ofI contains an element generatingI;

(d) if I is an integral ideal andP is a minimal prime ofI, thenP is a minimal prime of

some generator in any generating set ofI;

4



(e) If I is an integral ideal and there is ana ∈ I contained in finitely many maximal ideals,

thenI = aR + bR for someb ∈ R.

Proposition 2.2 ( (L. Fuchs & L. Salce), Proposition I.2.7) A finitely generated idealI of an

integral domainR is invertible if and only ifIRM is invertible for all maximal idealsM ofR.

Definition 2.4 A non-zero fractional idealI of an integral domainR is said to be divisorial

if I = R : (R : I).

Proposition 2.3 ( (L. Fuchs & L. Salce), Proposition I.2.9) LetR be a domain andI ∈ F (R).

Then

(a) R : I is divisorial for all I;

(b) R : (R : I) =
⋂
{aR|I ≤ aR};

(c) I is divisorial if and only ifI =
⋂
{aR|I ≤ aR};

(d) if I is divisorial, thenI : J is divisorial for all J ∈ F (R).

2.2. Integrally Closed Domains

Definition 2.5 LetT be an integral domain andR a subring ofT . An elementx ∈ T is said

to be integral overR if there exists a monic polynomialf ∈ R[x] such thatf(x) = 0.

Theorem 2.1 ( (L. Fuchs & L. Salce), Theorem I.3.1) LetT be an integral domain,R a

subring ofT , andx ∈ T . The following are equivalent:

(a) x is integral overR;

(b) the subringR[x] ofT , which is generated byR andx, is a finitely generatedR-module;

(c) there is a subringS of T containingx, which is finitely generated as anR-module.

Corollary 2.1 ( (L. Fuchs & L. Salce), Corollary I.3.2) The elements of an integral domain

T , which are integral over a subringR, form a subring containingR.

The subring ofT mentioned in Corollary 2.1 is called theintegral closure ofR in T .

If each element ofT is integral overR, we say thatT is integral over R, and ifR coincides

with its integral closure inT , we say thatR is integrally closed inT . Moreover,R is an

integrally closed domainif it is integrally closed in its quotient field.

5



Lemma 2.1 ( (L. Fuchs & L. Salce), Exercise I.3.1) LetR be a domain with quotient fieldQ.

Suppose that0 6= x ∈ Q. Then the elementx−1 is integral overR if and only ifx−1 ∈ R[x].

Proof Let 0 6= x ∈ Q. Suppose thatx−1 is integral overR. Then we havea1 + a2x
−1 +

· · · + anx
−n+1 + x−n = 0, ai ∈ R for 1 ≤ i ≤ n. Now, if we multiply the previous

equation byxn−1, we will havea1xn−1 + a2x
n−2 + · · · + an + x−1 = 0. This givesx−1 =

−(a1x
n−1 + a2x

n−2 + · · ·+ an) ∈ R[x]. Conversely, suppose thatx−1 ∈ R[x]. Then we can

write x−1 = a0 + a1x + · · ·+ anx
n, ai ∈ R, 0 ≤ i ≤ n. After multiplying both sides of the

equation by(x−1)n, we have0 = an + an−1x
−1 + an−2(x

−1)2 + · · ·+ a0(x
−1)n − (x−1)n+1.

Hence,x−1 is integral overR. �

Definition 2.6 An integral domainR is called a GCD-domain if every paira, b of elements

has a greatest common divisor g.c.d(a, b) = d, i.e.,d|a, b andc|a, b impliesc|d.

Proposition 2.4 ( (L. Fuchs & L. Salce), Proposition I.3.4) GCD-domains are integrally

closed.

2.3. Completely Integrally Closed Domains

Definition 2.7 Let T be an integral domain containing the subringR. An elementx ∈ T

is called almost integral overR if there is a finitely generatedR-submodule ofT containing

R[x].

Remark 2.2 By Theorem 2.1(c), ifx ∈ T is integral overR, thenx is almost integral overR

as well.

The set of elements of an integral domainT , which are almost integral overR, form

a subring ofT is called thecomplete integral closure ofR in T . If R coincides with its

complete integral closure inT , R is calledcompletely integrally closed inT . Furthermore,

R is a completely integrally closed domain if it is completelyintegrally closed in its quotient

field.

Proposition 2.5 ( (L. Fuchs & L. Salce), Proposition I.3.9) LetR be an integral domain and

Q its quotient field. Thenx ∈ Q is almost integral overR if and only if there is an element

r ∈ R× such thatrxn ∈ R for all n ∈ N.

There is a relation, which has an attractive role for completely integrally closed do-

mains, for non-zero fractional idealsI, J in F (R), defined byI ∼ J if and only if R : I =

R : J . Using Proposition 2.3(a), it follows that:

6



(1) this is a congruence relation inF (R);

(2) I is congruent to the divisorial idealIv = R : (R : I);

(3) distinct divisorial ideals are incongruent.

The equivalence classes under∼ are calleddivisors. The divisor containing the frac-

tional idealI is denoted bydiv(I), and the set of all divisors is denoted byD(R). Also, we

will usediv(x) for the divisor containing principal fractional idealxR, where0 6= x ∈ Q.

The set of all divisorsD(R) becomes an additive monoid under the operationdiv(I)+

div(J) = div(IJ) with the identitydiv(R). This operation is well-defined sinceR : IJ =

(R : I) : J = (R : Iv) : J = (R : J) : Iv = (R : Jv) : Iv = R : IvJv implies that

div(I) + div(J) = div(Iv) + div(Jv). Moreover,D(R) is a partially ordered monoid by

definingdiv(I) ≤ div(J) if R : I ≤ R : J .

Proposition 2.6 ( (L. Fuchs & L. Salce), Proposition I.3.11) IfI andJ are non-zero fractional

ideals of an integral domainR, the supremum ofdiv(I) anddiv(J) is div(I ∩ J), while their

infimum isdiv(I + J).

Proposition 2.6 shows that the monoidD(R) is lattice-ordered. However, next theorem

proves thatD(R) becomes a lattice-ordered group ifR is an integrally closed domain.

Proposition 2.7 ( (L. Fuchs & L. Salce), Proposition I.3.10) Each non-unitr of a completely

integrally closed domainR satisfies
⋂

n∈N r
nR = 0.

Theorem 2.2 ( (L. Fuchs & L. Salce), Theorem I.3.12) The monoidD(R) of the divisors of

R is a lattice ordered group if and only ifR is completely integrally closed.

2.4. Totally Ordered and Lattice-Ordered Groups

Definition 2.8 An abelian groupG, which is a totally ordered set under a binary relation≤,

is called a totally ordered group if it satisfies thata ≤ b impliesa+c ≤ b+c for all a, b, c ∈ G.

An elementa of a totally ordered groupG is calledpositive or strictly positive if

a ≥ 0 or a > 0, respectively. The set of all the positive elements ofG is calledpositivity

domain ofG and it is denoted byG+.

Definition 2.9 A subgroupH of a totally ordered groupG is said to be convex or isolated if

a < g < b with a, b ∈ H, g ∈ G implies thatg ∈ H.

The order type of the set of all proper convex subgroups ofG is called therank of G.

7



Definition 2.10 An abelian groupG, which is partially ordered set under a binary relation

≤, is called a lattice-ordered group if any two elements ofG have a least upper bound, i.e.,

givena, b ∈ G, there isg ∈ G such thata ≤ g andb ≤ g.

Let G be a partially ordered set. We say thatG is filtered if for any a, b ∈ G, there

existsc ∈ G such thata ≤ c andb ≤ c (or, equivalently,c ≤ a andc ≤ b).

Theorem 2.3 ( (R. Gilmer), Theorem 15.4.(1)) LetG be a partially ordered and filtered

abelian group. Then the following are equivalent:

(1) G is lattice-ordered;

(2) sup(a, b) exists for alla, b ∈ G+;

(3) inf(a, b) exists for alla, b ∈ G+.

The set of minimal elements amongst the strictly positive elements ofG is denoted by

MinG+ and forγ ∈ G, γ ∈ MinG+ if and only if γ > 0 and there is noβ ∈ MinG+ with

0 < β < γ.

Lemma 2.2 ( (L. Fuchs & L. Salce), Lemma III.4.8) LetG be a lattice-ordered group and

γ ∈ MinG+. If γ ≤ α1 + · · · + αn with 0 < αi for 1 ≤ i ≤ n, thenγ ≤ αi for some

i ∈ {1, . . . , n}.

Theorem 2.4 ( (L. Fuchs & L. Salce), Theorem III.4.9) LetG be a lattice-ordered abelian

group such that every non-empty set of positive elements contains a minimal member. ThenG

is order-isomorphic to the free group
⊕

γ∈MinG+ γZ endowed by the pointwise ordering.

Corollary 2.2 ( (L. Fuchs & L. Salce), Corollary III.4.10) LetG be a lattice-ordered sub-

group of a free abelian groupF lattice-ordered by the pointwise ordering. Then

G ∼=
⊕

γ∈MinG+ γZ.

8



CHAPTER 3

VALUATION DOMAINS

In this chapter we review the most useful properties of valuation domains which play a

distinguished role in our discussions in latter chapters. We will see for every valuation domain

R, there exists a valuation from the quotient fieldQ of R to a totally ordered value group, and

this valuation satisfies that elements ofQ, which have non-negative values, are exactly from

the domainR. Furthermore, in the last section of this chapter, we have mentioned that there

is an isomorphism from the set of invertible ideals of an integrally closed domainR into the

cardinal product of the value groups of valuation overringsof R.

3.1. Fundamental Properties of Valuation Domains

Proposition 3.1 The following are equivalent for a ringR:

(a) for all idealsA,B of R, A ⊆ B or B ⊆ A;

(b) for all elementsa,b of R, aR ⊆ bR or bR ⊆ aR.

Proof (a ⇒ b) It is clear.

(b ⇒ a) SupposeA * B for any given two ideals ofR. Then there is an element

a ∈ A− B. Now for all b ∈ B, bR ⊆ aR sinceaR * B. So,B ⊆ aR ⊆ A.

�

Definition 3.1 When a ringR satisfies the equivalent conditions in Proposition 3.1, it is

called a valuation ring. A valuation ring which is an integral domain will be called a val-

uation domain.

Proposition 3.2 LetR be an integral domain with the quotient fieldQ. ThenR is a valuation

domain if and only if for all0 6= x ∈ Q, x ∈ R or x−1 ∈ R.

Proof (⇒) Let us takex ∈ Q. Then we can writex = ab−1 for somea, b ∈ R with b 6= 0.

SinceR is a valuation domain, we haveaR ⊆ bR or bR ⊆ aR, i.e., a = br1, or b = ar2

for somer1, r2 ∈ R. Therefore,x = br1b
−1 = r1 or x = aa−1r−1

2 = r−1
2 , that is,x ∈ R or

x−1 ∈ R.

(⇐) Let us take any two elementsa, b ∈ R, and setx = ab−1 ∈ Q. Then, by assumption,

x ∈ R or x−1 ∈ R. So, we havea ∈ bR or b ∈ aR. Thus,R is a valuation domain. �

9



Example 3.1 The localizationZp = {pk
a

b
∈ Q : p ∤ b, p ∤ a, k ∈ Z+ ∪ {0}} of the ring of

integers at a prime idealpZ is a valuation domain:

Let us take two different elementsq1 = pk1
a

b
, q2 = pk2

c

d
∈ Zp. If k1 ≥ k2, then

q1 = q2p
k1−k2

ad

bc
or if k2 ≥ k1, thenq2 = q1p

k2−k1
cb

da
. So, for the principal ideals(q1) and

(q2) ofZp, we have(q1) ⊆ (q2) or (q2) ⊆ (q1). Therefore,Zp is a valuation domain.

Remark 3.1 (1) A valuation ringR is local, i.e.,R has a unique maximal ideal.

(2) If R is a valuation ring andI * R is an ideal ofR, thenR/I is a valuation ring as

well.

(3) If R is a valuation ring andS  R is a multiplicatively closed subset ofR such that

0 /∈ S and1 ∈ S, thenS−1R is a valuation ring as well.

Lemma 3.1 ( (L. Fuchs & L. Salce), Lemma II.1.3) For a valuation domainR, we have:

(a) finitely generated ideals are principal;

(b) the only principal ideals which can possibly be primes areP and0;

(c) for a proper idealI ofR, eitherIn = 0 for somen ∈ N or the intersectionJ =
⋂

n∈N I
n

is a prime ideal ofR.

Before we prove a fact, we need to remember an important lemmawhich is called

Nakayama’s Lemma: LetM be a finitely generatedR-module and I an ideal contained in

the Jacobson radical ofR, i.e., contained in the intersection of all maximal ideals of R. If

IM = M , thenM = 0.

Lemma 3.2 LetR be a valuation domain with the maximal idealM . Then:

(a) R is Noetherian, but not Artinian if and only if its non-zero ideals are:R > M = pR >

. . . > pnR > . . . for n ∈ N. In this case,R is a principal ideal domain;

(b) R is Artinian if and only if it has finitely many ideals which areall principal: R > M =

pR > . . . > pnR = 0 for somep ∈ R andn ∈ N.

Proof To prove (a), supposeR is Noetherian. Then each ideal ofR is finitely generated.

So, by Lemma 3.1(a),R is a principal ideal domain. Thus, the maximal idealM = pR for

somep ∈ R. Now, we need to show that any non-zero proper idealI of R is of the formpkR.

Also, sinceR is a principal ideal domain, there is an elementa ∈ R such thatI = aR. Then

a ∈ M = pR, i.e., a = pa1 for somea1 ∈ R. If a1 is a unit ofR, thenp = aa−1
1 which

implies thatI = aR = pR = M . If a1 is not a unit ofR, thena1 ∈ pR, i.e., a1 = pa2

for somea2 ∈ R. Furthermore, if we proceed this pattern, we will have a chain of ideals
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I = aR  a1R  a2R  . . .. Ideals in the chain are not equal because ifanR = an+1R

thenan = pan+1. However, by Nakayama’s Lemma,anR = Man+1R impliesan = 0, i.e.,

an+1 = 0. So,I = 0, which is impossible. SinceR is Noetherian, this chain must terminate

at an idealanR, i.e.,anR = an+1R = . . . for somen ∈ N. This can only happen whenan is a

unit in R. Then we havea = pnan. Hence,I = aR = pnR. Conversely, the assumptions on

R satisfies the maximum condition on ideals ofR. Clearly,R is Noetherian.

To prove (b), supposeR is Artinian. Then, because of the fact that Artinian rings are

Noetherian, by (a),R has ideals of the formR > M = pR > . . . > pnR > . . . for n ∈ N.

This chain must terminate at a finite step, i.e.,R > M = pR > . . . > pnR = pn+1 = . . .

for somen ∈ N, sinceR is Artinian. pnR = pn+1R gives the equalitypn = pn+1r for some

r ∈ R. Thenpn(1−pr) = 0. Consequently,pn = 0 since1−pr is a unit by definition of local

ring. Thus,R has finitely many ideals which are principal:R > M = pR > . . . > pnR = 0

for somen ∈ N. Conversely, the assupmtions onR satisfies the minimum condition on ideals

of R. Hence,R is Artinian. �

Definition 3.2 AnR-moduleM is called uniserial if all submodules ofM are totally ordered

under inclusion, in other words; for allm1, m2 ∈ M , eitherm1R ≤ m2R or m2R ≤ m1R.

Lemma 3.3 ( (L. Fuchs & L. Salce), Lemma II.1.4) IfR is a valuation domain, then

(a) its quotient fieldQ is a uniserialR-module;

(b) every proper submodule ofQ is a fractional ideal ofR.

Definition 3.3 An overring ofR is a subring of the quotient fieldQ ofR which containsR.

Proposition 3.3 ( (L. Fuchs & L. Salce), Proposition II.1.5) LetR be a valuation domain. A

subringS of Q is an overring ofR if and only ifS = RP for some prime idealP of R. It is

necessarily a valuation domain.

3.2. Valuations

Definition 3.4 LetK be a field,G a totally ordered abelian group, and∞ a symbol which is

regarded to be larger than any element ofG. We set for everyg ∈ G, g+∞ = ∞+∞ = ∞.

Then a mapv : K → G ∪∞ is said to be a valuation if it satisfies:

V1. v(x) = ∞ for x ∈ K if and only ifx = 0;

V2. v(x.y) = v(x) + v(y) for all x, y ∈ K;
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V3. v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ K.

The subsetRv = {x ∈ K|v(x) ≥ 0} of K is a ring, which is called thevaluation

ring of v, the maximal ideal ofRv is given by the setPv = {x ∈ K|v(x) > 0}. Moreover,G

is called thevalue group of R, and the rank ofG is therank of the valuation ringR.

If the value groupG is isomorphic to the additive group of integersZ, then the val-

uationv is calleddiscrete valuation, and the valuation ringRv is calleddiscrete valuation

ring .

Remark 3.2 a|b holds for two elementsa, b ofRv if and only ifv(a) ≤ v(b):

Sincea|b, b = ar for somer ∈ R. Thenv(b) = v(a) + v(r), and hencev(b) ≥ v(a).

Conversely, ifv(b)−v(a) ≥ 0, thenv(ba−1) ≥ 0 implying thatba−1 ∈ R, and henceba−1 = r

for somer ∈ R, that isb = ar for somer ∈ R. Thus,a|b.

Theorem 3.1 ( (L. Fuchs & L. Salce), Theorem II.3.1) Every valuation domain R is the val-

uation ringRv of a valuationv of its quotient field.

Proof LetR be an integral domain with the quotient fieldQ. The set of invertible elements

of R, which is denoted byU , is a subgroup of the multiplicative groupQ×. SettingaU ≤ bU

for a, b ∈ Q× if and only if ba−1 ∈ R shows that the groupG = Q×/U becomes a partially

ordered abelian group. The positive elements ofG by the partial order ”≤” correspond to the

cosetsaU , wherea ∈ R. Also, the canonical surjectionv : Q× → G satisfiesv(a) ≥ v(c)

andv(b) ≥ v(c) implying thatv(a + b) ≥ v(c) for a, b, c, a + b ∈ Q×, soc|a andc|b imply

c|(a+b). If we had taken the domainR as a valuation domain,G would have become a totally

ordered group since foraU, bU ∈ G, wherea, b ∈ Q×, ab−1 ∈ R, or its inversea−1b ∈ R, i.e.,

aU ≤ bU or bU ≤ aU . Furthermore, we would rather view the operation onG as addition,

and we could extendv toQ by definingv(0) = ∞. Thenv clearly satisfies the propertiesV1,

V2 andV3, and the corresponding ringRv coincides with the domainR. �

Example 3.2 The mapv : Q → Z defined byv(pn a
b
) = n, wherep is a prime integer and

a, b ∈ Z such that gcd(ab, p) = 1, is a valuation onQ. The valuation ringRv = {x ∈

Q|v(x) ≥ 0} = {x ∈ Q|x = a
b

with gcd(a, b) = 1 andp ∤ b}, wherea, b ∈ Z, coincides with

the localizationZp of the ring of integers at a prime idealpZ.

Lemma 3.4 ( (L. Fuchs & L. Salce), Exercise II.3.2) Letv be a valuation of a fieldK andRv

its valuation ring. Then:

(a) v(x) = 0 if and only ifx is a unit inRv;

(b) for x, y ∈ K v(x) = v(y) if and only ifxRv = yRv;

(c) K is the quotient field ofRv.
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Proof To prove (a), firstly we need to see thatv(1) = v(1.1) = v(1) + v(1) implies

v(1) = 0. Then0 = v(1) = v(xx−1) = v(x) + v(x−1) implies v(x−1) = −v(x). So, if

v(x) = 0, then−v(x) = v(x−1) = 0. Thus, bothx andx−1 are elements ofRv, i.e. x is a

unit in Rv. Conversely, by assumption,x ∈ Rv andx−1 ∈ Rv. Then we havev(x) ≥ 0 and

v(x−1) ≥ 0. However,−v(x) = v(x−1). This means that eitherv(x) ≤ 0 or v(x−1) ≤ 0.

Therefore,v(x) = 0.

By Remark 3.2, we havev(x) = v(y) if and only if x = ry andy = sx for some

r, s ∈ Rv, i.e.,xRv ⊆ yRv andyRv ⊆ xRv. This proves (b).

To prove (c), let us take a non-unit elementr ∈ Rv. Thenv(r) > 0. So,−v(r) =

v(r−1) < 0. Therefore,r−1 ∈ K. Also, for each non-zeroq ∈ K, by definition of valuation,

we havev(q) ≥ 0 or v(q) < 0, i.e, q ∈ Rv or q−1 ∈ Rv. Hence,K is the quotient field of

Rv. �

Theorem 3.2 LetR be a valuation domain with the maximal idealM . ThenR is a discrete

valuation domain if and only if it is Noetherian.

Proof Let v be the valuation ofR having value groupZ. There exists an elementm ∈ M

such thatv(m) = 1. For a non-zero elementx ∈ M , v(x) is a positive integer, sayv(x) = n,

n ∈ Z+. Thenv(x) − nv(m) = v(xm−n) = 0, i.e., x = mnu for some unitu of R. So,

M = mR. Let I be a non-zero proper ideal ofR. Then{v(a)|0 6= a ∈ I} is the set of

positive integers, and it has a smallest element, sayk, k > 0. Then there exists an element

x ∈ I such thatv(x) = k. ThenI = xR = mkR. Therefore,R is a principal ideal domain,

so it is Noetherian. Conversely, by Lemma 3.2 (a), we can write the maximal idealM = mR

fo somem and for every non-zero elmenta ∈ R, there isk ∈ Z such thataR = mkR, i.e.,

a ∈ mkR, buta /∈ mk+1R. Then we can setv(a) = k which implies that ifa, b, c, d ∈ R with

ab−1 = cd−1 thenv(a) − v(b) = v(c) − v(d). Therefore, settingv(q) = v(a) − v(b), where

q = ab−1 ∈ Q, gives a mapv : Q → Z. It can be easily seen that this mapv is a valuation of

Q whose valuation ring isR with value groupZ. So,R is a discrete valuation ring. �

3.3. More on Valuation Domains

In this section we give some connections between integrallyclosed domains and val-

uation domains.

First of all, a valuation domain is integrally closed since it is a GCD-domain by its

definition. This fact gives us an important theorem on integrally closed domains.

Theorem 3.3 ( (L. Fuchs & L. Salce), Theorem I.3.6) An integral domainR is integrally

closed if and only ifR is the intersection of its valuation overrings.
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Proof SupposeR is integrally closed. To proveR is the intersection of its valuation over-

rings, it is enough to show that for eachx ∈ Q − R there is a valuation overring ofR that

fails to containx. By Lemma 2.1,x is not integral overR impliesx /∈ R[x−1]. Then owing

to Zorn’s lemma, we can have an overringR⋆ of R[x−1], which is maximal with respect to

the exclusion ofx. In order to prove thatR⋆ is a valuation domain, we will show that for any

non-zeroy ∈ Q, eithery ∈ R⋆, or y−1 ∈ R⋆, i.e.,x ∈ R⋆[y], or x ∈ R⋆[y−1]. Assume to the

contrary thaty, y−1 /∈ R⋆, i.e., bothx ∈ R⋆[y] andx ∈ R⋆[y−1]. Then we have equations

x = a0 + a1y + · · ·+ any
n, x = b0 + b1y

−1 + · · ·+ bmy
−m,

whereai, bj ∈ R⋆, 1 ≤ i ≤ n, 1 ≤ j ≤ m, andn,m have been chosen as small as possible.

By symmetry, we may supposen ≥ m. Also, sincex /∈ R⋆, neithera0 = x nor b0 = x.

Then if we multiply the second equation byx−1, we get1 = b′0 + b′1y
−1 + · · ·+ b′my

−m with

b′j = bjx
−1 andb′0 6= 1. Therefore,(1− b′0)y

n = b′1y
n−1 + · · ·+ b′my

n−m. Then

x = a0 + a1y + · · ·+ any
n

(1− b0x
−1)x = (1− b0x

−1)(a0 + a1y + · · ·+ any
n)

x− b0 = a0(1− b0x
−1) + · · ·+ an−1(1− b0x

−1)yn−1 + an(1− b0x
−1)yn.

So, we can writex = c0+c1y+· · · cky
k for somek < n sincean(1−b0x

−1)yn = an(b
′
1y

n−1+

· · ·+ b′my
n−m). This gives a contradiction, therefore;R⋆ is a valuation domain, and from the

way of definingR⋆, R is the intersection of those valuation domains. �

Definition 3.5 A ∗-operation onR is a mappingF → F ∗ of F (R) into F (R) such that for

eachq ∈ Q and allA,B ∈ R:

1. (q)∗ = (q); (qA)∗ = aA∗,

2. A ⊆ A∗; if A ⊆ B, thenA∗ ⊆ B∗,

3. (A∗)∗ = A∗.

Moreover, an idealA is called a∗-ideal if A = A∗.

Theorem 3.4 ( (R. Gilmer), Theorem 32.5) LetR be an integral domain with the quotient

fieldQ, and assume that{Vi}i∈I is a family of overrings ofR such thatR =
⋂

i∈I Vi. If F is a

non-zero fractional ideal ofR, we defineF ∗ to be
⋂

i∈I FVi. Then the mappingF → F ∗ is a

∗-operation onR andFVi = F ∗Vi for each non-zero fractional idealF of R and for eachi.
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Lemma 3.5 ( (R. Gilmer), Lemma 32.17) IfF → F ∗ is a ∗-operation on an integral domain

R and ifA is an invertible fractional ideal ofR, then for eachB ∈ F (R), (AB)∗ = AB∗. In

particular,A∗ = (AD)∗ = AD∗ = A; that is,A is a∗-ideal.

The groupI(R) of all invertible fractional ideals is partially ordered under the order

A ≤ B if and only ifB ⊆ A.

Proposition 3.4 ( (J. Brewer & L. Klingler, 2005), Proposition 1) LetR be an integrally

closed domain with{Vi}i∈I a collection of valuation overrings ofR such thatR =
⋂

i∈I Vi.

Denote byvi the valuation associated withVi, and byGi the corresponding value group. Let

A = (a1, . . . , an) be an invertible fractional ideal ofR. Then the mapping

Φ : I(R) →
∏

i∈I

Gi defined by

Φ(A) = (vi(A))i∈I = (min{vi(aj)}1≤j≤n)i∈I

is an order-preserving isomorphism fromI(R) into
∏

i∈I Gi, the cardinal product of theGi’s.

Proof We begin with by fixing notation. LetA = (a1, . . . , an) andB = (b1, . . . , bm) be

invertible fractional ideals ofR, wheren,m ∈ N. Then fori ∈ I, we havevi(A) = vi(aj(i)),

whereAVi = aj(i)Vi for vi(aj(i)) = min{vi(a1), . . . , vi(an))} andvi(B) = vi(bk(i)), where

BVi = bk(i)Vi for vi(bk(i)) = min{vi(b1), . . . , vi(bm))}.

Firstly, we show thatΦ is order-preserving.A ≥ B if and only if A ⊆ B if and only

if A +B = B if and only if (A +B)Vi = BVi for all i ∈ I if and only if vi(aj(i)) ≥ vi(bk(i))

for all i ∈ I if and only ifΦ(A) ≥ Φ(B).

Next, for eachi ∈ I, we have

vi(AB) = min{vi(ajbk)}1≤j≤n,1≤k≤m

= min{vi(aj) + vi(bk)}1≤j≤n,1≤k≤m

= vi(aj(i)) + vi(bk(i)) = vi(A) + vi(B),

then we also have

Φ(AB) = (vi(aj(i)) + vi(bk(i))i∈I

= (vi(aj(i)))i∈I + (vi(bk(i))i∈I

= Φ(A) + Φ(B).
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Therefore,Φ is a group homomorphism.

To showΦ is one-to-one, we first need to say that ifF ∈ F (R), then by Theorem

3.4, the mappingF →
⋂

i∈I FVi is a∗-operation. LetA,B ∈ I(R). If Φ(A) = Φ(B), then

vi(A) = vi(B) for eachi ∈ I, i.e.,AVi = BVi for eachi ∈ I. Then
⋂

i∈I AVi =
⋂

i∈I BVi.

However, by Lemma 3.5, we haveA =
⋂

i∈I AVi andB =
⋂

i∈I BVi sinceA andB are

invertible. Hence,Φ is one-to-one.

�
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CHAPTER 4

PRÜFER DOMAINS

In this chapter we define Prüfer domains and review the most useful properties of

Prüfer domains which are essential for our work. Additionally, let R be a Prüfer domain.

Then we give two significant approximation theorems forR which give us an isomorphism

from the group of all invertible ideals ofR ontothe cardinal direct sum of corresponding value

groups of valuation overrings ofR. For further information and proofs, we refer to (J. Brewer

& L. Klingler, 2005).

4.1. Fundamental Properties of Pr̈ufer Domains

Let R be an integral domain with the quotient fieldQ.

Definition 4.1 R is called a Pr̈ufer domain if its localization at a maximal idealRM is a

valuation domain for all maximal idealsM of R.

Theorem 4.1 ( (L. Fuchs & L. Salce), Theorem III.1.1) The following are equivalent for an

integral domainR:

(a) R is a Prüfer domain;

(b) every finitely generated non-zero fractional ideal is invertible;

(c) the lattice of the fractional ideals ofR is distributive: for fractional idealsI, J,K ofR,

I ∩ (J +K) = (I ∩ J) + (I ∩K);

(d) every overring ofR is a Prüfer domain.

Proof (a)⇒(b) Let I be a finitely generated andM a maximal ideal ofR. ThenIRM is a

finitely generated ideal of the valuation domainRM , sinceI = Ra1 + · · ·+Ran implies that

S−1I = S−1Ra1 + · · ·+ S−1Ran for a localization ofR at any multiplicative subsetS of R.

Hence,IRM is principal; so, it is invertible. Then by Proposition 2.2,I is invertible.

(b)⇒(a) Let M be a maximal ideal ofR. We will show that given two elements
a
b
, c
d
∈ RM , wherea, b, c, d ∈ R and withb, d /∈ M , eithera

b
∈ ( c

d
)RM or c

d
∈ (a

b
)RM . Clearly,
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it is enough to show that eithera ∈ cRM or c ∈ aRM . ThenaRM + cRM is an invertible

ideal in the local domainRM . Therefore, by Proposition 2.1(c), eitheraRM + cRM = aRM

or aRM + cRM = cRM . This provesRM is a valuation domain.

(a)⇒(c) We always have(I ∩J)+(I ∩K) ≤ I ∩ (J +K) for fractional idealsI, J,K

of R. Conversely, let us take an elementx ∈ I ∩ (J +K). Thenx ∈ I andx ∈ J +K imply

thatx ∈ IRM andx ∈ JRM +KRM for any maximal idealM of R. SinceRM is a valuation

ring, JRM ⊆ KRM or KRM ⊆ JRM . So,x ∈ (IRM ∩ JRM) + (IRM + KRM). Also,

since it is true for any maximalM , we havex ∈ (I ∩ J) + (I ∩K).

(c)⇒(a) We need to show thatRM is a valuation domain for any maximal idealM of

R. Since the assumptions onR hold for any localization ofR, it is enough to show that a local

domainR′, which satisfies our assumptions, must be a valuation domain. For all a, b ∈ R′,

we haveaR′ = aR′ ∩ (bR′ + (a− b)R′) = (aR′ ∩ bR′) + (aR′ ∩ (a− b)R′). Thus,a = x+ y

for somex ∈ aR′ ∩ bR′ andy ∈ aR′ ∩ (a − b)R′. Then we can writey = r(a − b) for

somer ∈ R′. If r is not contained in the maximal ideal ofR′, thena − b = yr−1 ∈ aR′, so

b ∈ aR′. If r is contained in the maximal ideal ofR′, then1 − r is a unit inR′. Therefore,

a = x+ r(a− b) implies thata(1− r) = x− rb ∈ bR′, i.e. a ∈ bR′. Hence,R′ is a valuation

domain. This means thatRM is a valuation domain for all maximal idealsM of R.

(a)⇒(d) LetR′ be an overring ofR andM ′ a maximal ideal ofR′. ThenP = M ′∩R is

a prime ideal ofR. LetM be the maximal ideal ofR which containsP . Then, by Proposition

3.3,RP is a valuation domain sinceRP is an overring ofRM . We claim thatR′
M ′ = RP ,

so thatR′
M ′ is a valuation domain andR′ is a Prüfer domain. It is clear thatRP ⊆ R′

M ′ .

Also, sinceRP is a valuation domain, by Proposition 3.3 again,R′
M ′ is a localization ofRP ,

so thatR′
M ′ = RL for some prime idealL of R. Then, evidently,L = M ′R′

M ′ ∩ R =

M ′R′
M ′ ∩ R′ ∩ R = M ′ ∩ R = P . So,R′ is a Prüfer domain.

(d)⇒(a) It is trivial sinceR is an overring of itself. �

Lemma 4.1 ( (L. Fuchs & L. Salce), Lemma III.1.10) LetJ be a finitely generated ideal of a

Prüfer domainR. If I is an ideal contained inJ , thenI = KJ with a unique idealK ofR.

Proposition 4.1 ( (L. Fuchs & L. Salce), Proposition III.1.11) If every finitely generated ideal

of an integrally closed domainR can be generated by 2 elements, thenR is a Prüfer domain.

Remark 4.1 LetD be an overring of a Pr̈ufer domainR.

(a) An idealJ ofD satisfiesJ = (J ∩R)D;

(b) If L is a prime ideal ofD, thenP = L ∩ R is a prime ideal ofR, andDL = RP ;

(c) A prime idealP ofR generates a proper ideal ofD if and only ifD ≤ RP ;
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(d) The prime ideals ofD are exactly the idealsPD, whereP is a prime ideal ofR such

thatD ≤ RP ;

(e) Any overringD satisfiesD =
⋂

PD<D RP , whereP is a prime ideal ofR.

Definition 4.2 A domainR is called of finite character if every non-zero element, equiva-

lently, every non-zero ideal ofR is contained in but a finite number of maximal ideals.

We specialize Proposition 3.4 to Prüfer domains and determine the embedding defined

in Proposition 3.4 maps into the cardinal sum of theGi’s.

Theorem 4.2 ( (J. Brewer & L. Klingler, 2005), Thoerem 2) LetR be a Pr̈ufer domain with

{Mi}i∈I the collection of all maximal ideals ofR. Denote byvi the valuation associated with

the valuation ringRMi
, and byGi the associated value group. LetΦ be the same mapping

which is defined in Proposition 3.4. Then:

(1) The groupI(R) is lattice-ordered;

(2) The mappingΦ is an order-preserving isomorphism fromI(R) into
∏

i∈I Gi, the cardi-

nal product of theGi’s;

(3) The domainR is of finite character if and only ifΦ mapsI(R) into
∐

i∈I Gi, the cardinal

sum of theGi’s.

Proof (1) Let A = a1R + · · · + anR, B = b1R + · · · bmR ∈ I(R). SinceR is a Prüfer

domain,A+B = a1R+ · · ·+ anR+ b1R+ · · ·+ bmR is invertible, and it is the infimum of

A andB. Also,AB =
∑

1≤i≤n,1≤j≤m aibjR is invertible and it is an upper bound forA and

B. Thus,I(R) is filtered. Then by Theorem 2.3,I(R) is lattice-ordered.

(2) Since Prüfer domains are intersection of their valuation overrings, i.e., a Prüfer

domainR =
⋂

i∈I RMi
, whereMi’s are maximal ideals ofR, Prüfer domains are integrally

closed by Theorem 3.3. Therefore, the claim follows from Proposition 3.4.

(3) The Prüfer domainR is of finite character if and only if each non-zero finitely

generated idealA = (a1, . . . , an) of R is contained in finitely many maximal ideals of

R. However,A is also an invertible ideal sinceR is a Prüfer domain. Then the invert-

ible idealA of R is contained in only finitely many maximal ideals ofR if and only if

Φ(A) = (min{vi(aj)}1≤j≤n)i∈I has finitely many non-zero indices, i.e.,Φ(A) ∈
∐

i∈I Gi. �

19



4.2. Approximation Theorems for Prüfer Domains

We determine the embedding defined in Proposition 3.4 mapsonto the cardinal sum

of theGi’s for a Prüfer domainR if and only if the ”Strong Approximation Theorem” holds

for R.

Definition 4.3 Two valuation ringsV andW with the same quotient fieldQ are said to be

independent if and only ifV andW generate the fieldQ, i.e., there does not exist a valuation

ring U ⊆ Q such thatV ⊆ U andW ⊆ U .

Proposition 4.2 ( (J. Brewer & L. Klingler, 2005), Proposition 3) LetR be a Pr̈ufer domain

with {Mi}i∈I the collection of all maximal ideals ofR. Denote byvi the valuation associated

with the valuation ringRMi
and byGi the associated value group. Then the following are

equivalent:

(1) The valuation rings{RMi
}i∈I are pairwise independent;

(2) Each non-zero prime idealP ofR is contained in a unique maximal ideal ofR;

(3) D/P is a valuation ring for each non-zero prime idealP of R;

(4) The ”Strong Approximation Theorem” holds for elements inR; that is, for every finite

collection of maximal ideals{M1, . . . ,Mn} of R, and every choice of non-negative

elementsgi ∈ Gi, there is an elementr ∈ R such thatvi(r) = gi for 1 ≤ i ≤ n.

Definition 4.4 An integral domainR is an h-local domain ifR is of finite character and each

non-zero prime ideal ofR contained in a unique maximal ideal ofR.

Now, we can claim a stronger version of Proposition 4.2.

Proposition 4.3 ( (J. Brewer & L. Klingler, 2005), Proposition 4) LetR be a Pr̈ufer domain

with {Mi}i∈I the collection of all maximal ideals ofR. Denote byvi the valuation associated

with the valuation ringRMi
and byGi the associated value group. Then the following are

equivalent:

(1) R is h-local;

(2) The ”Very Strong Approximation Theorem” holds for finitely generated ideals ofR; that

is, for every finite collection of maximal ideals{M1, . . . ,Mn} of R, and every choice

of non-negative elementsgi ∈ Gi, there is a finitely generated idealA of R such that

vi(A) = gi for 1 ≤ i ≤ n, andvj(A) = 0 for all other maximal idealsMj of R.
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Moreover, when these equivalent conditions hold, the finitely generated idealA in (2) can

always be chosen to be 2-generated.

By Theorem 4.2, the mappingΦ defined in 3.4 is an isomorphism from the group of

all invertible fractional ideals of a Prüfer domainR into the cardinal sum ofGi’s if and only

if R is of finite character, and by Proposition 4.3,Φ mapsontothe cardinal sum ofGi’s if and

only if R is h-local. So, we can claim the next theorem.

Theorem 4.3 ( (J. Brewer & L. Klingler, 2005), Theorem 5) LetR be a Pr̈ufer domain with

maximal ideals{Mi}i∈I and corresponding value groups{Gi}i∈I , and letΦ be the mapping

defined in Proposition 3.4. ThenΦ is an isomorphism from the groupI(R) of invertible

fractional ideals ofR onto the cardinal direct sum
∐

i∈I Gi if and only ifR is h-local.
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CHAPTER 5

KRULL DOMAINS

In this chapter we review fundamental properties of Krull domains and we investi-

gate if we can prove a ”Strong Approximation Theorem” and a ”Very Strong Approximation

Theorem” for Krull domains.

5.1. Fundamental Properties of Krull Domains

Definition 5.1 An integral domainR is a Krull domain if

K1 R =
⋂

i∈Λ Vi, where theVi’s are overrings ofR which are discrete rank 1 valuation

domains, and

K2 every non-zero elementa ∈ R is invertible in almost all of theVi’s.

Lemma 5.1 ( (L. Fuchs & L. Salce), Exercise II.1.12) A discrete rank 1 valuation domain is

completely integrally closed.

Proof LetR be a discrete rank 1 valuation domain. So,R is a Noetherian valuation domain

as well. Let0 6= x ∈ Q, which is the quotient field ofR, be almost integral overR. Then there

existsr ∈ R such thatrxn ∈ R for all n ∈ N. Then the idealA = (rx, rx2, . . . , rxn, . . .)

is a finitely generated ideal ofR sinceR is Noetherian. Therefore,A = (rxk1 , . . . , rxkn),

wherek1, . . . , kn ∈ N. So, we can writerxk as a combination of generators ofA for any

k ∈ N. By choosingk > ki, 1 ≤ i ≤ n, we haverxk = a1rx
k1 + · · · + anrx

kn. Hence,

0 = −xk + a1x
k1 + · · · + anx

kn , i.e., x is integral overR. SinceR is intersection of its

valuation overrings,R is integrally closed, and consequentlyx ∈ R. Thus,R is completely

integrally closed. �

Lemma 5.1 shows that a Krull domain is completely integrallyclosed. Therefore, by

Theorem 2.2, the lattice-ordered monoidD(R) of the divisors ofR is a lattice-ordered group.

Since every overringVi in (K1) is a discrete rank 1 valuation domain, there exists a

valuationvi : Q → Z ∪ {0} such thatVi = Rvi = {x ∈ Q|vi(x) ≥ 0}. Furthermore, for a

non-zero fractional idealI ∈ F (R), we will setvi(I) = max{vi(q)|q ∈ Q, I ≤ qR}.

Lemma 5.2 ( (L. Fuchs & L. Salce), Lemma IV.1.2) For a non-zero fractional ideal I of a

Krull domainR, vi(I) = 0 holds for almost all indicesi ∈ Λ.
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By Proposition 2.3(c), we havevi(I) = vi(Iv). Using this property and Lemma 5.2,

we have the following lemma.

Lemma 5.3 ( (L. Fuchs & L. Salce), Lemma IV.1.3) IfR is a Krull domain, then the mapping

φ : D(R) →
⊕

i∈Λ Zi, Zi
∼= Z, defined by lettingvi(I) be thei-th coordinate ofφ(div(I)), is

an order-isomorphism of the lattice-ordered group of divisorial idealsI ofR with a subgroup

of the pointwise ordered lattice-ordered group
⊕

i∈Λ Zi.

Theorem 5.1 ( (L. Fuchs & L. Salce), Theorem IV.1.4) The following conditions on a domain

R are equivalent:

(a) R is a Krull domain;

(b) R is completely integrally closed and satisfies the ascendingchain condition on diviso-

rial ideals;

(c) the groupD(R) of divisors is a free abelian group with basisMinD(R)+, lattice-

ordered by the pointwise ordering.

Proof (a)⇒(b) A Krull domain is already completely integrally closed.By Lemma 5.3, an

ascending chainI1 ≤ I2 ≤ . . . ≤ In ≤ . . . of divisorial ideals ofR corresponds bijectively

to a decreasing chain of strictly positive elements in
⊕

i∈Λ Zi, i.e.,vi(I1) ≥ vi(I2) ≥ . . . ≥

vi(In) ≥ . . . for eachi ∈ Λ. Since
⊕

i∈Λ Zi is lattice-ordered, the latter chain contains a

minimal element. Thus, the chain of divisorial ideals has a maximal member.

(b)⇒ (c) Theorem 2.2 guarantees thatD(R) is a latticed-ordered abelian group. Then

the maximum condition on divisorial ideals translates intothe minimum condition on positive

elements ofD(R) via the order reversing bijectionI → div(I) and followed by the mapping

φ in Lemma 5.3. Therefore, by Theorem 2.4,D(R) ∼=
⊕

γ∈MinG+ γZ.

(c) ⇒ (a) By assumptions onD(R), for every0 6= q ∈ Q, we can write

div(q) =
∑

γ∈MinD(R)+

wγ(q)γ,

where thewγ(q) are integers uniquely determined byq and almost all ofwγ(q)’s are zero

sinceD(R) is free. Then from the relationsdiv(qq′) = div(q) + div(q′) anddiv(q + q′) ≥

inf(div(q), div(q′)) for non-zeroq, q′ ∈ Q, we conclude that eachwγ defines a discrete rank

1 valuation ofQ. Furthermore,q ∈ R if and only if div(q) ≥ 0 if and only if wγ(q) ≥ 0 for

all γ ∈ MinD(R)+. This guarantees thatR =
⋂

γ∈MinD(R)+ Wγ , whereWγ is the discrete

rank 1 valuation domain defined by the discrete rank 1 valuationwγ. Therefore, the property

(K1) holds forR. Moreover, sinceD(R) is a free abelian group,wγ(q) = 0 for almost all
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γ ∈ MinD(R)+, which shows that the property (K2) holds forR as well. Hence,R is a Krull

domain. �

The discrete rank 1 valuationswγ and the discrete rank 1 valuation domainsWγ, which

are defined in the proof of Theorem 5.1, are calledessential valuationsandessential valua-

tion overrings of the Krull domainR, respectively.

Corollary 5.1 ( (L. Fuchs & L. Salce), Corollary IV.1.5) A Noetherian domain is a Krull

domain if and only if it is integrally closed.

Proposition 5.1 ( (L. Fuchs & L. Salce), Proposition IV.1.6) LetR be a Krull domain and

D(R) its group of divisors. For eachγ ∈ MinD(R)+, letPγ be the maximal proper divisorial

ideal,wγ the essential valuation ofR associated withγ, andWγ the corresponding valuation

ring. Then:

(a) Pγ is a prime ideal ofR andWγ = RPγ
;

(b) {Pγ|γ ∈ MinD(R)+} is the set of minimal prime ideals ofR.

Proposition 5.2 ( (L. Fuchs & L. Salce), Exercise IV.1.4) LetR be a Krull domain. LetS be

a submonoid ofR×. ThenS−1R =
⋂
{Wγ|γ ∈ MinD(R)+, wγ(s) = 0 for all s ∈ S}, and

S−1R is a Krull domain.

Proof Let rs−1 ∈ S−1R, wherer ∈ R ands ∈ S. Thenwγ(rs
−1) = wγ(r) − wγ(s) =

wγ(r) ≥ 0 if wγ(s) = 0. Therefore,S−1R ⊆
⋂
{Wγ|γ ∈ MinD(R)+, wγ(s) = 0 for all

s ∈ S}. Conversely, take an elementx ∈
⋂
{Wγ |γ ∈ MinD(R)+, wγ(s) = 0 for all s ∈ S}.

Now, define the set{Wα|α ∈ MinD(R)+, wα(s) > 0 for somes ∈ S}. Then there exist

finitely many elemetsα1, . . . , αn of MinD(R)+ such thatwαi
(x) < 0 sinceR is a Krull

domain, andx = r1r
−1
2 for some non-zeror1, r2 ∈ R. Also, for eachαi, there existssi ∈ S

such thatwαi
(si) > 0. Choosing a positive integerk large enough such thatwαi

(ski x) ≥ 0

and settings = (s1 · · · sn)
k, we havewβ(sx) ≥ 0 for all β ∈ MinD(R)+. So, sx ∈ R

which impliesx ∈ RS sinces ∈ S. Hence,S−1R =
⋂
{Wγ|γ ∈ MinD(R)+, wγ(s) = 0 for

all s ∈ S}. Furthermore, this ensures that K1 and K2 hold forS−1R. So,S−1R is a Krull

domain. �

Since a Krull domainR is the intersection of its valuation overrings ,R is also an

integrally closed domain. Thus, we can specialize Proposition 3.4 for Krull domains.

Proposition 5.3 LetR be a Krull domain with{Pi}i∈I the collection of all minimal ideals of

R. Denote byvi the associated valuation with the valuation ringRPi
and byZi the associated
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value group. LetA = (a1, . . . , an) be an invertible fractional ideal ofR. Then the mapping

Φ : I(R) →
∐

i∈I

Zi defined by

Φ(A) = (vi(A))i∈I = (min{vi(aj)}1≤j≤n)i∈I

is an order-preserving isomorphism fromI(R) into
∐

i∈I Zi, the cardinal sum of theZi’s.

Proof By Proposition 3.4,Φ is already an order-preserving isomorphisminto
∏

i∈I Zi.

Let A ∈ I(R). ThenA = (a1, . . . , an) for somea1, . . . , an ∈ A. By (K2), vi(A) =

min{vi(aj)}1≤j≤n = 0 in almost all of theVi’s. This meansΦ(A) has finitely many non-

zero indices. So,Φ(A) ∈
∐

i∈I Zi. Therefore,Φ mapsinto
∐

i∈I Zi. �

5.2. Approximation Theorems for Krull Domains

There is already an approximation theorem for a Krull domainR. This approximation

theorem gives an element in the quotient fieldQ which satisfies the required assumptions on

R. However, we have proved that the ”Strong Approximation Theorem” holds for elements

in R. It gives us a progression to define another approximation theorem for finitely generated

fractional ideals ofR.

Proposition 5.4 ( (L. Fuchs & L. Salce), Proposition IV.1.7) Letw1, · · · , wn be different

essential valuations of a Krull domainR, and z1, . . . , zn ∈ Z. There exists an element

q ∈ Q such thatwi(q) = zi for all i = 1, . . . , n, andw(q) ≥ 0 for all essential valuations

w 6= w1, . . . , wn.

Proposition 5.5 LetR be a Krull domain with{Pi}i∈I the collection of minimal prime ideals

of R. Denote byvi the valuation associated with the valuation ringRPi
and byZi the asso-

ciated value group. Then the ”Strong Approximation Theorem” holds for elements inR; that

is, for every finite collection of minimal prime ideals{P1, . . . , Pn} of R, and every choice of

non-negative elementszi ∈ Zi, there is an elementr ∈ R such thatvi(r) = zi for 1 ≤ i ≤ n.

Proof Firstly, we claim that given distinct minimal prime idealsP, P1, . . . , Pn of R with

corresponding valuationsv, v1, . . . , vn and given non-negative valuez of v, there is an element

r ∈ R such thatv(r) > z andvi(r) = 0, 1 ≤ i ≤ n.

Let z be a non-negative value ofv. We know thatP −
⋃n

i=1 Pi 6= ∅ sinceP, P1, ..., Pn

are distinct minimal prime ideals. Therefore, we can choosec ∈ P −
⋃n

i=1 Pi. Now, since
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v(c) > 0, there exists a positive integerk such thatv(ck) > z. Moreover, sincec /∈ Pi,

1 ≤ i ≤ n, we also havevi(ck) = k.vi(c) = 0. Hence, the requiredr is ck for the claim.

Now, let z1, . . . , zn be non-negative elements ofZ1, . . . ,Zn, respectively. By the

claim, for eachi, we can chooseri ∈ R such thatvi(ri) > zi and for allj 6= i, vj(ri) = 0. Let

c1, . . . , cn ∈ R be such thatvi(ci) = zi, 1 ≤ i ≤ n, and set

bi = ci(r1 · · · ri−1ri+1 · · · rn).

Then for1 ≤ i ≤ n, we get

vi(bi) = vi(ci) + vi(r1) + · · ·+ vi(ri−1) + vi(ri+1) + · · ·+ vi(rn) = zi

sincevi(rj) = 0 for j 6= i. Also, for j 6= i, we have

vj(bi) = vj(ci) + · · ·+ vj(ri−1) + vj(ri+1) + · · ·+ vj(rn)

= vj(ci) + vj(rj) ≥ vj(rj) > zj .

Finally, if we setb = b1 + · · ·+ bn we getvi(b) = vi(bi) = zi, vi(bj) > zi for j 6= i.

�

Corollary 5.2 LetR be a Krull domain with{Pi}i∈I the collection of minimal prime ideals of

R. Denote byvi the valuation associated with the valuation ringRPi
and byZi the associated

value group. Then the valuation rings{RPi
}i∈I are pairwise independent.

Proof Let P1 andP2 be distinct minimal ideals ofR andq a non-zero element ofQ. If

v1(q) ≥ 0 or v2(q) ≥ 0, thenq ∈ RP1
or q ∈ RP2

. So, suppose thatv1(q) < 0 andv2(q) < 0.

By the Strong Approximation Theorem, there exists an element r ∈ R such thatv1(r) =

−v1(q) andv2(r) = 0. Then we can writeq = (qr)r−1. Sincev1(qr) = v1(q) + v1(r) = 0,

qr ∈ RP1
. Also,v2(r−1) = −v2(r) implies thatr−1 ∈ RP2

. �

Furthermore, we have proved that the ”Very Strong Approximation Theorem” holds

for finitely generated fractional ideals of a Krull domainR.

Proposition 5.6 LetR be a Krull domain with{Pi}i∈I the collection of minimal prime ide-

als ofR. Denote byvi the valuation associated with the valuation ringRPi
and byZi the

associated value group. Then the ”Very Strong Approximation Theorem” holds for finitely

generated ideals ofR; that is, for every finite collection of minimal prime ideals{P1, . . . , Pn}
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of R, and every choice of non-negative elementszi ∈ Zi, there is a finitely generated ideal

A of R such thatvi(A) = zi for 1 ≤ i ≤ n and andvj(A) = 0 for all other minimal prime

idealsPj of R. Moreover,A is two-generated.

Proof By Proposition 5.5, the Strong Approximation Theorem holdsfor Krull domains,

so we can find an elementr ∈ R such thatvi(r) = zi for 1 ≤ i ≤ n. By the definition

of Krull domain, we have finitely many other minimal prime idealsP1, . . . , Pm of R with

corresponding valuationsw1, . . . , wm such thatwj(r) > 0 for 1 ≤ j ≤ m. By the Strong

Approximation Theorem again, we can find an elementr′ ∈ R such thatvi(r′) = zi and

wj(r
′) = 0. Then the ideal(r, r′) is the required ideal. �
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CHAPTER 6

CONCLUSION

Let R be an integrally closed domain, and denote byI(R) the multiplicative group of

all invertible fractional ideals ofR. Let{Vi}i∈I be the family of valuation overrings ofR, and

denote byGi the corresponding value group of the valuation domainVi. We showed that if

R =
⋂

i∈I Vi then is a map fromI(R) into
∏

i∈I Gi, the cardinal product of theGi’s. Fur-

thermore, it is well known whenR is a Dedekind domain, this map becomes an isomorphism

onto
∐

i∈I Gi, the cardinal sum of theGi’s. In this case,Gi
∼= Z for eachi.

It is shown, by J. Brewer and L. Klingler, that this map is alsoan isomorphismonto
∐

i∈I Gi whenR is an h-local Prüfer domain by using two approximation theorems. In this

thesis, we showed that such a map exists and that it is injective whenR is a Krull domain.

Furthermore, we reformed these approximation theorems forKrull domanins, which helped

us to gain further insight about Krull domains.
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J. Algebra,205: 480-504, 1998.

29


