Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4055
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPusat, Dilek-
dc.contributor.authorTekin, Semra-
dc.date.accessioned2014-07-22T13:53:05Z-
dc.date.available2014-07-22T13:53:05Z-
dc.date.issued2009-
dc.identifier.urihttp://hdl.handle.net/11147/4055-
dc.descriptionThesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2009en_US
dc.descriptionIncludes bibliographical references (leaves: 36-37)en_US
dc.descriptionText in English; Abstract: Turkish and Englishen_US
dc.descriptionvii, 38 leavesen_US
dc.description.abstractThis thesis presents the theory of coprimary decomposition of modules over a commutative noetherian ring and its coassociated prime ideals. This theory is first introduced in 1973 by I. G. Macdonald as a dual notion of an important tool of associated primes and primary decomposition in commutative algebra. In this thesis, we studied the basic properties of coassociated prime ideals to a module M and gathered some modules in the literature which have coprimary decomposition. For example, we showed that artinian modules over commutative rings are representable. Moreover if R is a commutative noetherian ring, then we showed that injective modules over R are representable. Finally, we discussed the uniqueness properties of coprimary decomposition.en_US
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.lccQA247 .T266 2009en
dc.subject.lcshModules (Algebra)en
dc.subject.lcshDecomposition (Mathematics)en
dc.subject.lcshArtin algebrasen
dc.titleModules Whith Coprimary Decompositionen_US
dc.typeMaster Thesisen_US
dc.institutionauthorTekin, Semra-
dc.departmentThesis (Master)--İzmir Institute of Technology, Mathematicsen_US
dc.relation.publicationcategoryTezen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.openairetypeMaster Thesis-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
T000202.pdfMasterThesis255.66 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

150
checked on Mar 31, 2025

Download(s)

60
checked on Mar 31, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.