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ABSTRACT

MODULES WITH COPRIMARY DECOMPOSITION

This thesis presents the theory of coprimary decomposition of modules

over a commutative noetherian ring and its coassociated prime ideals. This

theory is first introduced in 1973 by I. G. Macdonald as a dual notion of an

important tool of associated primes and primary decomposition in commutative

algebra. In this thesis, we studied the basic properties of coassociated prime

ideals to a module M and gathered some modules in the literature which have

coprimary decomposition. For example, we showed that artinian modules over

commutative rings are representable. Moreover if R is a commutative noetherian

ring, then we showed that injective modules over R are representable. Finally, we

discussed the uniqueness properties of coprimary decomposition.
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ÖZET

EŞ DOǦAL ASALIMSI AYRIŞIMA SAHİP OLAN MODÜLLER

Bu tezde, deǧişmeli noether bir halka üzerindeki eş doǧal asalımsı ayrışım

kuramı ve onların eş ilişkili asal idealleri verilmiştir. Bu kuram, deǧişmeli ce-

birde önemli bir araç olan ilişkili asal idealler ve asalımsı ayrışım kavramının

duali olarak ilk defa 1973’de I. G. Macdonald tarafından ortaya konulmuştur. Bu

tezde, bir M modülünün eş ilişkili asal ideallerinin temel özelliklerini inceledik

ve eş doǧal asalımsı ayışımı olan literatürdeki bazı modülleri bir araya topladık.

Örneǧin, deǧişmeli halkalar üzerindeki artin modüllerin temsil edilebilir olduk-

larını gösterdik. Eǧer R deǧişmeli noether bir halka ise injektif modüllerin R

üzerinde temsil edilebilir olduklarını da gösterdik. Son olarak, eş doǧal asalımsı

ayrışımın teklik özelliklerini tartıştık.
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NOTATION

R an associative ring with unit unless otherwise stated

R-Mod the category of left R-modules

⊆ inclusion

( strict inclusion

Ω the set of all maximal ideals of the corresponding ring

Spec(R) the prime spectrum of R : the set of all prime ideals of R

Var(a) the variety of the ideal a : the set of all prime ideals containing

a

I ≤ R I is an ideal of R

N ⊆e M N is an essential submodule of M

Ass(M) the set of associated prime ideals of M

Ann(M) annihilator of M

Att(M) the set of attached prime ideals of M

Coass(M) the set of coassociated prime ideals of M

Ker f the kernel of the map f

Im f the image of the map f

Soc M the socle of the R-module M

Rad M the radical of the R-module M
∏

direct product
∐

external direct sum
⊕

internal direct sum
⊗

tensor product

MI ∏
i∈I

M (direct product of I copies of M)

M(I) ∐
i∈I

M (direct sum of I copies of M)

|A| cardinality of the set A

M[a] the submodule AnnM(a) = {m ∈ M | am = 0} of the R-module

M where a is an ideal of R

vii



CHAPTER 1

INTRODUCTION

Throughout this thesis all rings are commutative and unless otherwise

stated they are noetherian. By a module, we mean a unital left R-module.

In the study of modules over commutative noetherian rings, the set of

associated prime ideals, Ass(M), has proved to be an important tool. For a module

M, Ass(M) can be introduced as the set of prime ideals p such that p = Ann(m) for

some element m in M.

There have been four attempts in the literature to dualize the theory of

associated prime ideals in (Macdonald 1973), in (Chambles 1981), in (Zöschinger

1983) and in (Yassemi 1997). In (Yassemi 1997), it is shown that when the ring is

noetherian, all these definitions are equivalent. Here we shall follow Zöschinger’s

notation and terminology from (Zöschinger 1983). An aim of this thesis is to study

a theory dual to that of associated primes by defining Coass(M) to be the set of

prime ideals such that there exists an artinian homomorphic image M′ of M with

p = Ann(M′). In Chapter 3, we shall give basic properties of coassociated prime

ideals and give several examples.

There have been several accounts of the theory dual to the well-known

theory of primary decomposition for modules over a commutative ring R, for

example see (Kirby 1973), (Macdonald 1973) and (Zöschinger 1990). We shall

follow again Zöschinger’s terminology from (Zöschinger 1990). A module M

over a commutative ring R is called coprimary if M , 0 and for every x ∈ R either

xM = M or xkM = 0 for some k ≥ 1, i.e. for every x ∈ R the R-endomorphism

produced by multiplication by x is either surjective or nilpotent. A module M

is called representable if M is the sum of finitely many coprimary submodules.

A representation M = U1 + · · · + Un in which all Ui are coprimary is called a

coprimary decomposition in (Kirby 1973), and also a secondary representation of M

in (Macdonald 1973). Both authors investigated the existence and uniqueness

of such a decomposition analogous to the classical Noether-Lasker theory of

primary decomposition of noetherian modules. In particular, they showed that
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every artinian module is representable. By (Sharp 1976, Theorem 2.3), every

injective module over a noetherian ring is also representable .

Another aim of this thesis is to gather a wide class of representable modules

over a noetherian ring R. In particular, every artinian module is representable

and every injective module over a noetherian ring is representable. With the help

of the set Att(M) = {p ∈ Spec(R) | p is the annihilator of a factor module of M},
we obtain the following sufficient criterion in Theorem 4.4: If M is an R-module

such that Att(M) is discrete (i.e. from p1 ⊆ p2 it always follows p1 = p2), then M is

representable.

Finally, in Chapter 5, we discuss uniqueness properties of coprimary de-

compositions of modules.
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CHAPTER 2

PRELIMINARIES

2.1. Fundamental Definitions and Facts

Throughout R is a commutative ring with identity, all modules are unital

left R-modules. In this section we shall give some fundamental definitions and

facts.

Lemma 2.1 (Zorn’s Lemma) Let (V,�) be a non-empty partially ordered set which has

the property that every (non-empty) totally ordered subset of V has an upper bound in V.

Then V has at least one maximal element.

Definition 2.1 An ideal M of a commutative ring R is said to be maximal precisely

when M is a maximal member, with respect to inclusion, of the set of proper ideals of R.

In other words, the ideal M of R is maximal if and only if M ( R, and there is no

ideal I of R with M ( I ( R.

Definition 2.2 Let R be a commutative ring. The Jacobson radical of R, denoted by

Jac(R) or sometimes J(R), is defined to be the intersection of all the maximal ideals of R.

Thus Jac(R) is an ideal of R. Even in the case when R is trivial, our conven-

tion concerning the intersection of the empty family of ideals of a commutative

ring means that Jac(R) = R.

Definition 2.3 Let p be an ideal in a commutative ring R. We say that p is a prime ideal

of R precisely when p is a proper ideal of R, and whenever a, b ∈ R with ab ∈ p, then either

a ∈ p or b ∈ p.

Definition 2.4 Let R be a commutative ring and let I be an ideal of R. Then

√
I := {r ∈ R | there exists n ∈N with rn ∈ I}
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is an ideal of R which contains I, and is called the radical of I.

Lemma 2.2 Let I,J be ideals of the commutative ring R. We define the ideal quotient

(I : J) by

(I : J) = {a ∈ R | aJ ⊆ I}

clearly this is another ideal of R and I ⊆ (I : J). In the special case in which I = 0, the

ideal quotient

(0 : J) = {a ∈ R | aJ = 0} = {a ∈ R | ab = 0 for all b ∈ J}

is called the annihilator of J and is also denoted by Ann J or AnnR J.

Definition 2.5 A commutative ring R which has exactly one maximal ideal, M say, is

said to be quasi-local. A commutative Noetherian ring which is quasi-local is called a

local ring.

When R is quasi-local, Jac(R) is the unique maximal ideal of R.

Theorem 2.1 (First Isomorphism Theorem) Let M and N be modules over a commutative

ring R, and let f : M → N be an R-homomorphism. Then f induces an isomorphism

f ′ : M/Ker f → Im f for which

f ′(m + Ker f ) = f (m) for all m ∈M.

Theorem 2.2 (Second Isomorphism Theorem) Let M be a module over a commutative

ring R. Let N and K be submodules of M such that N ⊆ K so that K/N is a submodule of

the R-module M/N. Then there is an isomorphism

f : (M/N)/(K/N)→M/K

such that f ((m + N) + K/N) = m + K for all m ∈M.

Theorem 2.3 (Third Isomorphism Theorem) Let M be a module over a commutative

ring R. Let N and K be submodules of M. Then there is an isomorphism

f : N/(N ∩ K)→ (N + K)/K

4



such that f (n + N ∩ K) = n + K for all n ∈ N

Definition 2.6 A module M is called finitely generated (finitely cogenerated) in case for

every setA of submodules of M

∑A = M (
⋂A = 0) implies

∑F = M (
⋂F = 0)

for some finite F ⊆ A.

Definition 2.7 Let M be a module over the commutative ring R. We say that M is

a noetherian R-module precisely when it satisfies the following conditions which are

equivalent

(i) Whenever (Gi)i∈N is a sequence of submodules of M such that

G1 ⊆ G2 ⊆ · · · ⊆ Gi ⊆ Gi+1 ⊆ · · · ,

then there exists k ∈ N such that Gk = Gk+i for all i ∈ N. This is called the

ascending chain condition for submodules of M.

(ii) Every non-empty set of submodules of M contains a maximal element with respect

to inclusion. This is called the maximal condition for submodules.

(iii) Every submodule of M is finitely generated.

Definition 2.8 We say that M is an artinian R-module precisely when it satisfies the

following conditions which are equivalent

(i) Whenever (Gi)i∈N is a sequence of submodules of M such that

G1 ⊇ G2 ⊇ · · · ⊇ Gi ⊇ Gi+1 ⊇ · · · ,

then there exists k ∈ N such that Gk = Gk+i for all i ∈ N. This is called the

descending chain condition for submodules of M.

(ii) Every non-empty set of submodules of M contains a minimal element with respect

to inclusion. This is called the minimal condition for submodules.

(iii) Every factor module of M is finitely cogenerated.
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Definition 2.9 Let M be a module over the commutative ring R. A zero-divisor on M is

an element r ∈ R for which there exists m ∈ M such that m , 0 but rm = 0. An element

of R which is not a zero-divisor on M is often referred to as a non-zero-divisor on M.

The set of all zero-divisors on M is denoted by Zdv(M).

Definition 2.10 Let M be a module over the commutative ring R. A proper submodule

Q of M is said to be a primary submodule of M precisely when (M/Q) , 0 and, for each

a ∈ ZdvR(M/Q), there exists n ∈ N such that an(M/Q) = 0, i.e. for all a ∈ R, m ∈ M

am ∈ Q then m ∈ Q or anM ⊆ Q.

Let Q be a primary submodule of M. It is easy to show that p :=
√

Ann(M/Q)

is a prime ideal of R. In this case, we say that Q is a p-primary submodule of

M, or that Q is p-primary in M. Also if Q1, . . . ,Qn (where n ∈ N) are p-primary

submodules of M, then so too is
n⋂

i=1
Qi.

Definition 2.11 Let M be a module over the commutative ring R, and let G be a proper

submodule of M. A primary decomposition of G in M is an expression for G as an

intersection of finitely many primary submodules of M. Such a primary decomposition

G = Q1 ∩ . . . ∩Qn with Qi pi-primary in M (1 ≤ i ≤ n)

of G in M is said to be minimal precisely when

(i) p1, . . . , pn are n distinct prime ideals of R; and

(ii) for all j = 1, . . . , n, we have

Q j +
n⋂

i=1
i, j

Qi.

We say that G is a decomposable submodule of M precisely when it has a primary

decomposition in M.

Lemma 2.3 (First Uniqueness Theorem for Primary Decomposition) Let M be a module

over the commutative ring R, and let G be a decomposable submodule of M. Let

G = Q1 ∩ . . . ∩Qn with Qi pi- primary in M (1 ≤ i ≤ n)

and
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G = Q′1 ∩ . . . ∩Q′n′ with Q′i p
′
i-primary in M (1 ≤ i ≤ n′)

be two minimal primary decomposition of G in M. Then n = n′ and

{p1, . . . pn} = {p′1, . . . p′n}.

Lemma 2.4 (Second Uniqueness Theorem for Primary Decomposition) Let M be a mod-

ule over the commutative ring R, and let G be a decomposable submodule of M. Let

G = Q1 ∩ . . . ∩Qn with Qi pi-primary in M (1 ≤ i ≤ n)

and

G = Q′1 ∩ . . . ∩Q′n with Q′i pi-primary in M (1 ≤ i ≤ n)

be two minimal primary decompositions of G in M. (Here we use the first uniqueness

theorem.) Suppose that p j is a minimal member of {p1, . . . pn} with respect to inclusion.

Then Q j = Q′j.

Theorem 2.4 (Krull’s Intersection Theorem) Let a be an ideal of the commutative

Noetherian ring R such that a ⊆ Jac(R). Then

∞⋂
i=1
an = 0.

Definition 2.12 Let R be a commutative ring, let G, M and N be R-modules, and let

g : G→M and f : M→ N be R-homomorphisms. We say that the sequence

G
g // M

f // N

is exact precisely when Im g = Ker f .

Theorem 2.5 Let a be a proper ideal of the commutative ring R. Then

Var(a) := {p ∈ Spec(R) | p ⊇ a}

has at least one minimal member with respect to inclusion. Such a minimal member is

called a minimal prime ideal of a or a minimal prime ideal containing a.

Corollary 2.1 Let a be a proper ideal of the commutative ring R, and let Min(a) denote

the set of minimal prime ideals of a. Then

7



√
a =

⋂
p ∈ Min(a)

p

Definition 2.13 Let p ∈ Spec(R). Then the height of p, denoted by ht p is defined to be

the supremum of lengths of chains

p0 ( p1 ( · · · ( pn

of prime ideals of R for which pn = p if this supremum exists, and∞ otherwise.

Definition 2.14 A proper submodule A of M is called small if A + B = M, then B=M

for all submodules B of M.

Definition 2.15 Let M, N be R-modules. A homomorphism f : M → N is called

essential (small) if Im f is essential in N (Ker f is small in M).

Definition 2.16 Let M be a module over a commutative noetherian ring R, and let

p ∈ Spec(R). We say that p is an associated prime (ideal) of M precisely when there exists

m ∈ M with (0 : m) = Ann(m) = p. Observe that, if m ∈ M has (0 : m) = p as above,

then m , 0. The set of associated prime ideals of M is denoted by Ass(M).

If M and M’ are isomorphic R-modules, then Ass(M) = Ass(M′).

Definition 2.17 Let U be a submodule of an R-module M. If there exists a submodule

V of M minimal with respect to the property M = U + V, then V is called a supplement

of U in M. (This is equivalent of saying that M = U + V and U ∩ V is small in V.)

Proposition 2.1 ((Matlis 1960), Proposition 3) Let M be an R-module. Then the

following are equivalent:

(i) M is artinian.

(ii) M is a submodule of E1 ⊕ · · · ⊕ En where Ei = E(R/mi) with mi a maximal ideal of

R.

(ii) M has maximal orders and finitely generated socle.

8



2.2. Lasker-Noether Theorem

The Lasker-Noether theorem is an extension of the fundamental theorem

of arithmetic, and more generally the fundamental theorem of finitely generated

abelian groups to all noetherian rings. The theorem was first proven by Emanuel

Lasker (1905) for the special case of polynomial rings, and was proven in its full

generality by Emmy Noether (1921).

Definition 2.18 A submodule N of a module M is called irreducible if it is not an

intersection of two strictly larger submodules.

Theorem 2.6 (Lasker-Noether Theorem) Every submodule of a finitely generated

module over a noetherian ring is a finite intersection of primary submodules.

The proof of Lasker-Noether theorem follows immediately from the fol-

lowing three facts:

(i) Any submodule of a finitely generated module over a noetherian ring is an

intersection of a finite number of irreducible submodules.

(ii) If N is an irreducible submodule of a finitely generated module M over a

noetherian ring then M/N has only one associated prime ideal.

(iii) A finitely generated module over a noetherian ring is primary if and only if

it has at most one associated prime.

9



CHAPTER 3

COASSOCIATED AND ATTACHED PRIME IDEALS

3.1. Coassociated Prime Ideals

In this section, we shall derive basic results about coassociated primes

without mentioning coprimary submodule or coprimary decomposition.

Definition 3.1 An R-module M is called hollow if M , 0 and every proper submodule

is small in M.

Definition 3.2 A module M is called indecomposable if A ⊕ B = M implies that either

A = 0 or B = 0 for all submodules A,B of M.

Clearly, if M is hollow, then M is indecomposable. But the converse is true

if every non-zero factor of M is indecomposable (see 41.4 in (Wisbauer 1991)).

Lemma 3.1 If M is hollow, then the set {x ∈ R | xM , M} is a prime ideal of R which is

denoted by I(M).

Proof Since 0 ∈ I(M), I(M) , ∅. Let x, y ∈ I(M). Then xM , M and yM , M.

Since M is hollow (x + y)M ⊆ xM + yM , M, hence (x + y)M , M. Therefore

x + y ∈ I(M). Now for all r ∈ R, x ∈ I(M), rxM ⊆ xM , M, so rx ∈ I(M). Thus I(M)

is an ideal of R. Clearly 1 < I(M), so I(M) is proper.

Let x, y < I(M), then xM = M and yM = M, so x(yM) = M and xy < I(M).

Therefore I(M) is prime ideal of R. �

Lemma 3.2 If M is an artinian R-module, then it can be written as a finite sum of hollow

submodules.

Proof First, we will prove that an artinian R-module M has at least one hollow

summand. If M is itself hollow, it is done. Suppose M is not hollow. Then

M = U1 + X1 for some proper submodules U1, X1. Now if U1 is hollow, it is done.

If U1 is not hollow, then again U1 = U2 + X2 for some proper submodules U2 and
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X2. Keep arguing that U2 is hollow or not. Continuing this way, we obtain a

descending sequence M ⊇ U1 ⊇ U2 ⊇ · · · of submodules of M. Since M is artinian

this chain must be terminate at a hollow submodule Un(n ∈N). Now M = Un + X

where X = Xn + Xn−1 + · · · + X1, so Un is the desired hollow submodule.

Now we will prove that M is a finite sum of hollow submodules. If X is

hollow, it is done, if not, since X is artinian, by above paragraph X = Un+1 + Y1 for

some submodules Un+1,Y of M where Un+1 is hollow. Now M = Un + Un+1 + Y1,

and if Y1 is hollow, it is done, if not continue this way to obtain the descending

sequence X ⊇ Y1 ⊇ Y2 ⊇ · · · of submodules. This chain must terminate at a hollow

submodule Ym. Hence M = Un + Un+1 + · · ·+ Un+m + Ym indicates that M is a finite

sum of hollow submodules. �

A module C in R-Mod is called a cogenerator provided that C cogenerates

every left R-module, that is, M can be embedded in a product of copies of C

0 // M // CA .

Proposition 3.1 ((Anderson and Fuller 1992), Proposition 18.15) Let E be an in-

jective left R-module, then E is a cogenarator if and only if E cogenerates every simple left

R-module.

Proof Necessity is clear. To prove the sufficiency, suppose E cogenerates every

simple left R-module. Let M be a left R-module and let 0 , m ∈ M. Consider

the submodule Rm. Since Rm is finitely generated (cyclic) it contains a maximal

submodule, say K. So HomR(Rm/K,E) , 0. Otherwise Rm/K = 0 would give

a contradiction. Here Rm π // Rm/K αm // E , say βm = αmoπ where 0 , αm ∈
HomR(Rm/K,E). Since E is injective, βm can be extended to a homomorphism

β : M→ E such that the diagram

0 // Rm ι //

βm
² ²

M

β}}{
{

{
{

E

is commutative, i.e. β(m) = βm(m) , 0. Now define β : M → EM by β(a) = (βm(a))

where a ∈M. Clearly, β is a monomorphism since βm(a) , 0 for all a ∈M. �

The following theorem will play a key role in the sequel.
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Theorem 3.1 If R is a noetherian ring, then every nonzero module over R has an artinian,

hence also a hollow factor module.

Proof Let ΛR := {Sm | Sm � R/m where m is a maximal ideal of R } and

ΛR(E) := {E(Sm) | Sm ∈ Λ} where E(Sm) denotes the injective envelope of Sm.

By Proposition 3.1, C :=
∏

Sm∈Λ
E(Sm) is a cogenerator for every R-module. So

there exists a monomorphism f : M → CI for some index set I. Note that

CI = (
∏

Sm∈Λ
E(Sm))I �

∏
Sm∈Λ

E(Sm)I. Since f is a monomorphism there exists a

0 , m ∈ M such that f (m) , 0. Say f (m) = (. . . , s′, . . .) where 0 , s′ ∈ E(S′)

for some S′ ∈ ΛR. Now the projection on E(S′) gives

0 // M
f //

∏
Sm∈Λ

E(Sm)πE(S′) // E(S′).

Thus we have found a non-zero homomorphism α : M → E(S′) where

α = πE(S′) ◦ f and by the first isomorphism theorem M/K � Imα ⊆ E(S′) where

K = Kerα. By Proposition 2.1 E(S′) is artinian. Hence M/K is the desired artinian

factor of M.

Now by Lemma 3.2

(M/K) = (H1/K) + (H2/K) + · · · + (Hn/K)

where Hi/K(1 ≤ i ≤ n) are hollow. Now

(M/K)/((H2 + · · · + Hn)/K) � M/(H2 + · · · + Hn) � H1/H1 ∩ (H2 + · · · + Hn).

Since H1/K is hollow, and H1K � M/(H2 + · · · + Hn), the desired hollow factor is

M/(H2 + · · · + Hn). �

Definition 3.3 Let R be a noetherian ring and M be an R-module. Then a prime ideal p

is called coassociated to M if there is a hollow factor module M′ of M with p = I(M′). The

set of all coassociated prime ideals to M is denoted by Coass(M).

We shall give an equivalent statement to this definition after the following

example.

Example 3.1 ((Zöschinger 1983), Example 1) If M is an artinian module over a

noetherian ring R, then
⋂

Coass(M) =
√

Ann(M).
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Proof For every module M we have
⋂

Coass(M) ⊇
√

Ann(M) because from

p = I(M/M0) with M/M0 hollow it follows that p ⊇ Ann(M/M0) ⊇ Ann(M). But if

M is artinian and M = U1 + · · · + Un, thus that all Ui are hollow and none of them

is redundant, then it follows with pi = I(Ui) that every x ∈ pi is already nilpotent

with respect to Ui, i.e. pi =
√

Ann(Ui). Hence
⋂

Coass(M) =
n⋂

i=1
pi =

√
Ann(M). �

Lemma 3.3 ((Zöschinger 1986), Lemma 3.1) Let R be a noetherian ring and M be an

R-module. Then a prime ideal p is coassociated to M if and only if there is an artinian

factor module A of M with p = Ann(A).

Proof For p ∈ Coass(M) there is a artinian hollow factor module M/M0 where

p = I(M/M0), and for every submodule U where M0 ⊆ U ( M we have

p =
√

Ann(M/U). To eliminate the square root choose a maximal element

a0 = Ann(M/U0) in the set {Ann(M/U) | M0 ⊆ U ( M}. Then a0 is a prime

ideal (see (Bourbaki 1967, chap.IV, §1 ,Prop.1)), hence p = a.

Conversely, if p = Ann(M/U) and C = M/U is artinian then the canonical

map γ ∈ HomR(M,C) since Ann(γ) = p. If f ∈ HomR(M,C) with p = Ann( f ), then

A = M/Ker f is an artinian factor module of M with Ann(A) = p. By Example 3.1

we have
⋂

Coass(A) =
√

Ann(A), so p ∈ Coass(A), p ∈ Coass(M) as we wished. �

By Theorem 3.1, we can say that Coass(M) , ∅ for every non-zero R-

module M. If M is itself hollow and I(M) = {x ∈ R | xM , M} as above, then

I(M) = I(M/M0) for every submodule M0 ( M, hence Coass(M) = {I(M)}. More

generally, we have the following lemma.

Lemma 3.4 Let M be a module over a noetherian ring R. If M = U1 + · · ·+Un such that

all Ui are hollow and none of them can be omitted, then Coass(M) = {p1, . . . , pn} where

pi = I(Ui).

Proof Set Ki =
n∑

j=1
j,n

U j , so Ki is proper.

M/Ki = (U1 + · · · + Ui + · · · + Un)/Ki � Ui/(Ui ∩ Ki).

Hence I(M/Ki) � I(Ui/Ui ∩ Ki) = I(Ui) = pi since Ui is hollow, so pi ∈ Coass(M).

Therefore {p1, . . . , pn} ⊆ Coass(M).

Conversely, let p ∈ Coass(M). Then p = I(M/T) for some hollow factor M/T

of M. Now
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M/T = (U1+· · ·+Un)/T = (U1+T)/T+· · ·+(Un+T)/T � U1/(U1∩T)+· · ·+Un/(Un∩T).

Since M/T is hollow M/T � Ui/(Ui ∩ T) for some i(1 ≤ i ≤ n). Therefore I(M/T) �

I(Ui/(Ui ∩ T)) = pi = I(Ui), since Ui is hollow. Thus p = pi for some i (1 ≤ i ≤ n).

Hence Coass(M) ⊆ {p1, . . . , pn}. �

Example 3.2 ((Zöschinger 1983), Example 2) For every ideal a of a noetherian ring

R we have

Coass(
∞∐

i=1

R/ai) = {p ∈ Spec(R) | p+a , R}.

Proof Let a be an ideal of a ring R. An R-module M is called a-torsion if
∞∑

i=1
AnnM(ai) = M. For every a-torsion module N it follows from p+a = R that

N is p-divisible. Then by (Lemma 3.6, i) p < Coass(N), i.e. for the particular

module N =
∞∐

i=1
R/ai we have shown that Coass(N) ⊆ {p ∈ Spec(R) | p+a , R}.

For the converse, let now p ∈ {p ∈ Spec(R) | p+a , R}, hence p+a ⊆ m for

some m ∈ Ω. The injective hull E of R/m is artinian, hence also the submodule

M = HomR(R/ p,E) is, and from Ann(M) = p it follows by Example 3.1 that

p ∈ Coass(M). Since in addition, M is a-torsion and countably generated, there

is an epimorphism of N =
∞∐

i=1
R/ai on M such that p ∈ Coass(N). (Here we have

also
⋂

Coass(N) =
√

Ann(N) because with a′ = {x ∈ R | x = ax for some a ∈ a}
by Krull’s Intersection Theorem we have Ann(N) = a′. Now if p is minimal over

Ann(N), then it is shown in (Zöschinger 1982, Lemma 1.2) that p+a , R, hence

p ∈ Coass(N).) �

Lemma 3.5 ((Zöschinger 1983), Lemma 2.1) Let R be a noetherian ring and M be an

R-module. Let U be a submodule of M.

(i) We always have Coass(M) ⊆ Coass(U) ∪ Coass(M/U).

(ii) If p ∈ Coass(U), then there is p0 ∈ Coass(M) with p0 ⊆ p.

(iii) If U is small in M, then Coass(M) = Coass(M/U).

(iv) If U is coclosed in M, then Coass(M) = Coass(U) ∪ Coass(M/U).

Proof (i) Let p ∈ Coass(M), p < Coass(U). In p = I(M/M0) with M/M0 hollow, we

must have U + M0 , M. Otherwise U + M0 = M implies that U/(U ∩M0) = M/M0
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and p = I(M/M0) � I(U/(U ∩M0)), hence p ∈ Coass(U) which is a contradiction.

Therefore from I(M/M0) = I(M/(U + M0)) it follows that p ∈ Coass(M/U).

(ii) In p = I(U/U0) we can additionally assume that U/U0 is artinian, and

then for some maximal element V0 in the set {U0 ⊆ V ⊆M | V ∩U = U0} we have

that U/U0 → M/V0 is an essential monomorphism, i.e. Imϕ ⊆e V0, hence also

M/V0 is artinian. By Example 3.1 it follows
⋂

Coass(M/V0) ⊆
√

Ann(U/U0) ⊆ p
(also U/U0 = U/V0 ∩ U � (U + V0)/V0 ⊆ M/V0), hence p0 ⊆ p for some p0 ∈
Coass(M/V0) and of course p0 ∈ Coass(M).

(iii) Since every factor of M/U is a factor of M, it is clear that Coass(M/U) ⊆
Coass(M). Conversely, if p ∈ Coass(M), then p = I(M/L) where M/L is a non-zero

hollow factor. Since U is small in M, M/(U + L) is non-zero, so that p = I(M/L) =

I(M/(U + L)) ∈ Coass(M/U).

(iv) A submodule U is called coclosed in M, if for every X ( U we have

that U/X is not small in M/X. Always Coass(M/U) ⊆ Coass(M). By (i), we only

need to prove that Coass(U) ⊆ Coass(M). Let p ∈ Coass(U). Then p = I(U/U0)

where U/U0 is hollow. Hence U/U0 is not small in M/U0, i.e. U + M0 = M for

some M0/U0  M/U0. It follows that p = I(U/U0) � I((U/U0)/(U ∩ M0)/U0) �

I(U/U ∩M0) � I(U + M0/M0) � I(M/M0). Therefore p ∈ Coass(M). �

Remark. All four parts of the Lemma (as well as Lemma 3.6) are well-

known in the corresponding formulation for associated prime ideals. But for

the fact Ass(
∐
λ∈Λ

Mλ) =
⋃
λ∈Λ

Ass(Mλ) there is no analogy by coassociated prime

ideals: For all n ≥ 1, Coass(Rn) = Ω while Coass(R(N)) = Coass(RN) = Spec(R) by

Example 3.2.

Lemma 3.6 ((Zöschinger 1983), Lemma 2.2) Let M be a module over a noetherian

ring R, a be an ideal of R and Ω be the set of all maximal ideals of R.

(i) M is a-divisible if and only if a lies in none of the coassociated prime ideals to M.

(ii) aM is small in M if and only if a lies in all of the coassociated prime ideals to M.

(iii) M is radical if and only if Coass(M) contains no maximal ideals,

(i.e. Coass(M) ∩Ω = ∅).

(iv) M is coatomic (i.e. every submodule is contained in a maximal submodule) if and

only if Coass(M) consists only of maximal ideals, (i.e. Coass(M) = Ω).
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Proof (i) We will first show more generally that Coass(M/aM) = Coass(M) ∩
Var(a) where Var(a) denotes the variety of a. Always Coass(M/aM) ⊆ Coass(M)

and clearly for every p ∈ Coass(M/aM) we have that a ⊆ Ann(M/aM) ⊆ p, so

p ∈ Var(a). Conversely, let p ∈ Coass(M) ∩ Var(a), i.e. a ⊆ p = I(M′) for some

hollow factor M′ of M: If M′ were a-divisible , then xM′ = M′ for some x ∈ a ⊆ p.

Hence x < I(M′) = p, a contradiction. So M′ is not a-divisible, i.e. yM′ , M′ for

some y ∈ a. Therefore p = I(M′) = I(M′/yM) = I((M′/yM)/(aM/yM)) � I(M′/aM′).

Therefore M′/aM′ is a factor module of (M/aM). Therefore p ∈ Coass(M/aM).

Now we prove the particular statement of part (i) in the lemma: M is not a-

divisible if and only if aM , M. In that case ∅ , Coass(M/aM) = Coass(M)∩Var(a).

Therefore there exists p ∈ Coass(M) ∩ Var(a), i.e. a ⊆ p for some p ∈ Coass(M).

(ii) If aM is small in M, then it follows by Lemma 3.5(iii) and newly proved

above equality that Coass(M) ⊆ Var(a), i.e. a ⊆ p for all p ∈ Coass(M) ; but if aM

is not small in M then there is a hollow a-divisible factor module M′ of M, and

p = I(M′) does not lie over a by (i).

(iii) This follows immediately from (i) with a = m for all m ∈ Ω.

(iv) Let p ∈ Coass(M). Then p = I(M/M0) = I((M/M0)/(K/M0)) � I(M/K) for

some submodule M0 and for some maximal submodule K containing M0. Since

M/K � R/m for some maximal ideal m, we have that p � I(R/m) = {x ∈ R |
xR + m , R}. If x ∈ m, then xR + m = m , R, so x ∈ p. Thus the inclusion m ⊆ p
implies that m = p. Conversely, suppose Coass(M) ⊆ Ω. Then for every X ( M,

we have that M/X is not radical by (iii), i.e. X lies in a maximal submodule of

M. �

Corollary 3.1 ((Zöschinger 1983), Corollary 1) For every module M over a noethe-

rian ring R, we have
⋃

Coass(M) = {x ∈ R | xM , M} and
⋂

Coass(M) is the largest

ideal a of R such that aM is small in M.

Part (ii) also yields a generalization of the Krull’s Intersection Theorem. If

J is the Jacobson radical of the ring R and M is a finitely generated R-module, then

it is well-known that JM is small in M and
∞⋂

i=1
JiM = 0. The generalization says:

Corollary 3.2 ((Zöschinger 1983), Corollary 2) Let M be a module over a noetherian
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ring R. Let a and M be arbitrary and assume that aM is small in M, then

∞⋂

i=1

aiM = 0.

Proof If M is artinian, then it follows from a ⊆ ⋂
Coass(M) by Example 3.1 that

aeM = 0 for some e ≥ 1. But if M is arbitrary, then there is a family (Uλ | λ ∈ Λ) of

submodules such that all M/Uλ are artinian and
⋂
λ∈Λ

Uλ = 0. Since every M/Uλ is

annihilated by a (dependent on λ) power of a, we have
∞⋂

i=1
aiM ⊆ Uλ for all λ ∈ Λ,

hence the claim follows. �

3.2. Attached Prime Ideals

Now we will give a generalization of the concept “coassociated”. A prime

ideal p of R is called attached to the R-module M if p = AnnR(M/U) for some

submodule U of M. In this case, since p = AnnR(M/ pM), the set Att(M) of all

attached prime ideals behaves very simply under the direct product of modules:

Att(M(I)) = Att(MI) = Att(M) for every non-empty index set I. Also in difference to

Coass(M), an element of Att(M) is easily given: By (Zöschinger 1987, p.592) , every

minimal prime ideal of AnnR(M) belongs to Att(M). In particular,
⋂

Att(M) =
√

AnnR(M).

Example 3.3 ((Zöschinger 1988), Example 1) If M is a finitely generated module

over a noetherian ring R, then

Att(M) = {p ∈ Spec(R) | p ⊇ AnnR(M)}.
Proof For every module M and every p ∈ Att(M), we have p ⊇ AnnR(M). But

if M is finitely generated, then by (Bourbaki 1967, Chapter II §4 Proposition

18, Cor.) for every prime ideal p we have
√

AnnR(M/ pM) =
√
p+ AnnR(M). If

p ⊇ AnnR(M), then AnnR(M/ pM) ⊆ p, i.e. p ∈ Att(M). –Of course, if M is finitely

generated, then Coass(M) = {m ∈ Ω | m ⊇ AnnR(M)}, so Coass(M) = Att(M) only

if M is of finite length. �

Example 3.4 ((Zöschinger 1988), Example 2) If M is a flat module over a noetherian

ring R, then Att(M) = {p ∈ Spec(R) |M/ pM , 0}.
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Proof We only need to show “ ⊇ ”. Since M/ pM is a torsion-free nonzero

module over the integral domain R/ p, we have AnnR/ p(M/ pM) = 0, i.e.

AnnR(M/ pM) = p. We do not know that under what extra conditions on a

flat module M, really Coass(M) = Att(M). �

Example 3.5 ((Zöschinger 1988), Example 3) If M is an injective module over a

noetherian ring R, then Att(M) = {p ∈ Ass(R) |M[p] , 0} = Coass(M).

Proof For every finitely generated R-module A it is shown in (Zöschinger 1986,

Corollary 3.3) that

Att(HomR(A,M)) ⊆ {p ∈ Ass(A) |M[p] , 0} ⊆ Coass(HomR(A,M)),

so that the claim yields A = R. �

Example 3.6 ((Zöschinger 1988), Example 4) If R is local and M is radical, then

every attached prime ideal is an intersection of coassociates.

Proof For every p ∈ Att(M) the R/ p-module M = M/ pM is faithful, so by

(Zöschinger 1988, Corollary 1.3) we have
⋂

CoassR/ p(M) = 0 so that p =
⋂
λ∈Λ

pλ

where Coass(M/ pM) = {pλ | λ ∈ Λ}. In addition, if Coass(M) were countable,

the same proof and (Zöschinger 1988, Corollary 1.5) shows that we even have

Coass(M) = Att(M). �
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CHAPTER 4

EXISTENCE OF COPRIMARY DECOMPOSITION

Let M be a non-zero R-module. M is called coprimary if for every r ∈ R,

the R-endomorphism of M produced by multiplication by r is either surjective or

nilpotent, i.e. for every r ∈ R either rM = M or rkM = 0 for some k ≥ 1. It is said

that M is representable if M is the sum of finitely many coprimary submodules.

Lemma 4.1 If an R-module M is coprimary, then p :=
√

Ann(M) is a prime ideal.

Proof Let r, s ∈ R and rs ∈
√

Ann(M) but s <
√

Ann(M). Then (rs)nM = 0

for some positive integer n, and skM , 0 for all positive integers k. Since M is

coprimary, we have sM = M, and hence snM = M. Therefore 0 = (rs)nM = rnsnM =

rnM implies that r ∈
√

Ann(M). �

Following above lemma, M is called p-coprimary. A representation M =

U1 + · · · + Un in which all Ui are coprimary is called a coprimary decomposition

in (Kirby 1973) , and also a secondary representation of M in (Macdonald 1973).

Both authors investigated the existence and uniqueness of such a decomposition

analogous to the classical Noether-Lasker theory of primary decomposition of

noetherian modules. In particular, they showed that every artinian module is

representable. Later in (Sharp 1976, (Theorem 2.3)) it is shown that every injective

module over a noetherian ring is representable. We shall give their proofs in the

following sections.

If M has a coprimary decomposition, then we say that M has a minimal

coprimary decomposition if it has the smallest possible number of coprimary mod-

ules, that is, there exist a positive integer n, distinct prime ideals pi(1 ≤ i ≤ n) of

R, and pi −coprimary submodules Mi(1 ≤ i ≤ n) of M such that

(i) M = M1 + · · · + Mn, and

(ii) M j *
n∑

i=1
i, j

Mi for all j where 1 ≤ j ≤ n.

The following proposition gives a test for prime-coprimary relationship:
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Proposition 4.1 ((Kirby 1973), Proposition 3) Let M , 0 be an R-module, and let p

be a prime ideal of R. Then M is a p-coprimary module if and only if,

(i) r ∈ R and rM , M imply r ∈ p, and

(ii) p ⊆
√

Ann(M).

Proof When M is p-coprimary, p =
√

Ann(M) and r ∈ R, r < p imply rM = M.

So (i) and (ii) are immediate.

Conversely, suppose (i) and (ii) hold. Consider r ∈ R such that r <
√

Ann(M); then r < p by (ii) and rM = M by (i). So M is coprimary. Next

consider r ∈ R such that r < p. Hence rM = M by (i), and rkM = M , 0 for all

k, i.e. r <
√

Ann(M). Therefore p ⊇
√

Ann(M) which with (ii) shows that M is

p-coprimary. �

4.1. Basic Facts and Examples of Coprimary and Representable

Modules

Proposition 4.2 ((Muslim Baig 2009), Proposition 3.2.15) If R is an integral do-

main, then its quotient field K is a 0-coprimary R-module.

Proof For all r ∈ R and a/b ∈ K, a/b = r(a/rb) then rK = K. Hence K is coprimary

Let a/b ∈ K with a, b ∈ R and b , 0. Without loss of generality, let a , 0 and for

any x ∈ R, xa/b = 0 then x = 0. Therefore
√

Ann(K) = 0. �

Example 4.1 ((Muslim Baig 2009), Example 3.2.16) Q is a 0-coprimary Z-module,

and so is Q/Z.

Proof Let n ∈ Z, n , 0 and a/b ∈ Q, b , 0. n(a/nb) = a/b and nQ = Q. Without

loss of generality, we may also assume a , 0, then na/b = 0 so n = 0.Therefore
√

AnnQ = 0. Then Q is a 0-coprimary. By Lemma 4.2, Q/Z is also 0-coprimary.�

Proposition 4.3 ((Muslim Baig 2009), Proposition 3.2.17) If m is a maximal ideal

of R, then R/mn is an m-coprimary R-module for every n ≥ 1.

Proof Let x ∈ R. If x ∈ m, then for any r = r + mn ∈ R/mn, we have xnr =

xn(r +mn) = xnr +mn = mn, where r ∈ R. Then xn(R/mn) = 0. Otherwise, if x < m,

then (x) +m = R and hence there exists u ∈ R such that ux + a = 1 for some a ∈ m.
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Moreover, 1 = 1n = (ux + a)n = vx + an for some v ∈ R. Now for any r ∈ R/mn we

have r = r.1 +mn = r(vx + an) +mn = xvr + ran +mn = xvr +mn = x(vr +mn) = x(vr).

Thus, R/mn is coprimary. Finally, note that
√

Ann(R/mn) = m which gives R/mn

is m-coprimary. �

Example 4.2 ((Muslim Baig 2009), Example 3.2.18) Let R = Z and M = Z/ pn Z.

If x ∈ Z and (x, p) = 1 then xM = M. Otherwise, if p|x then xnM = 0. That is, M is a

p-coprimary Z-module where p = pZ and p is a prime number.

Proof Let x ∈ Z. If p | x then x = pk. Let m ∈ M, then xnm = (pk)nm = pnknm =

pnknm + pnZ = pnZ then xnM = 0. If (x, p) = 1 then p - x and (x, pn) = 1. Now

given m ∈ M, we have (x, pn) = 1, hence 1 = xa + pnb for some a, b ∈ Z. Thus

m = m.1 = (m + pnZ)(xa + pnb) = xma + pnbm + pnZ = xma. Hence m = x(ma) gives

that M is p-coprimary. �

Lemma 4.2 Let p be a prime ideal of R and let M be a p-coprimary module. Then M/K

is a p-coprimary R-module for each proper submodule K of M.

Proof Let r ∈ R. Suppose M is p-coprimary and r(M/K) , M/K. In this case

rM + K , M, and this gives that rM , M. Otherwise, rM = M would give the

contradiction M , M. Now, since M is coprimary rkM = 0 for some k ≥ 1. But

rkM = 0 ⊆ K gives that rk(M/K) = 0. Hence M/K is coprimary.

Now let s ∈ Ann(M/K). Then sM ⊆ K and K is proper together gives that

sM , M. Since M is p-coprimary stM = 0 for some t ≥ 1, and hence st ∈ p. Since p

is prime we have s ∈ p. Therefore
√

Ann(M/K) = Ann(M/K) = p �

Corollary 4.1 If M is representable, then M/K is representable for every proper sub-

module K of M.

Proof There exist a positive integer n and coprimary submodules Mi(1 ≤ i ≤ n)

of M such that M = M1 + · · ·+ Mn. Then M/K = ((M1 + K)/K) + · · ·+ ((Mn + K)/K).

Then,for each 1 ≤ i ≤ n, (Mi + K)/K � Mi/(Mi ∩ K) so that (Mi + K)/K = 0 or

(Mi + K)/K is coprimary by Lemma 4.2. �

Lemma 4.3 Let p be a prime ideal of R, let n be a positive integer, and let Mi(1 ≤ i ≤ n)

be non-zero left R-modules. Then the R-module M1 ⊕ · · · ⊕Mn is p-coprimary if and only

if Mi is p-coprimary for each 1 ≤ i ≤ n.
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Proof Necessity follows from Lemma 4.2. Now let M = M1 ⊕ · · · ⊕Mn. Suppose

Mi are p-coprimary for every i ∈ {1, . . . , n}. Let r ∈ R and assume that rM , M.

Then there exists j ∈ {1, . . . , n} such that rM j , M j. Since M j is p-coprimary

rk jM j = 0 for some k j ≥ 1 and hence r ∈ √
Ann M j = p. But p =

√
Ann Mi for

every i ∈ {1, . . . , n}. Thus rkiMi = 0 for some ki ≥ 1 for each i ∈ {1, . . . , n}. Say

k = max{k1, . . . , kn}. Then rkM = 0. Since r ∈
√

Ann M = p, M is p-coprimary. �

Corollary 4.2 Let p be a prime ideal of R, let n be a positive integer, and let Mi(1 ≤ i ≤ n)

be p-coprimary submodules of M. Then the submodule M1+· · ·+Mn of M is a p-coprimary

R-module.

Corollary 4.3 If M has a coprimary decomposition, then M has a minimal coprimary

decomposition.

Proof Follows immediately from Corollary 4.2. �

4.2. Artinian Modules are Representable

Throughout this section R is a commutative ring which is not necessarily

noetherian. The proofs of this section closely follows the ones from (Kirby 1973).

Lemma 4.4 Let M be an Artinian R-module. If M is not coprimary, then there exist

proper submodules N1, N2 of M such that M = N1 + N2.

Proof Suppose that M is not coprimary, i.e. there exists r ∈ R such that r <
√

Ann(M) and rM ( M. Thus rkM , 0 for all k ≥ 1, and so M[Rrk] ( M for all k.

Consider the descending sequence

M ) rM ⊇ r2M ⊇ · · · ,

and suppose rtM = rt+1M. Put N1 = rM and N2 = M[Rrt]; so N1, N2 are both

proper submodules of M. Let m ∈M; then rtm ∈ rtM = rt+1M, i.e.

m ∈ rM + M[Rrt] = N1 + N2.

Hence M = N1 + N2 as required. �
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Theorem 4.1 Every artinian R-module is the sum of a finite number of coprimary

R-modules.

Proof Let F denote the family of submodules of the artinian module M which

cannot be written as a finite sum of coprimary modules. Suppose that F is non-

empty; so F contains a minimal element, say M. Note that M is not coprimary,

so, by Lemma 4.4, M = N1 + N2 where M ) N1 and M ) N2. By the minimality

of M, both N1 and N2 are finite sums of coprimary modules, and so, therefore, is

M. This contradiction shows that F is empty, and so M itself is the sum of a finite

number of coprimary R-modules. �

4.3. Injective Modules over Noetherian Rings are Representable

The results in this section are due to (Sharp 1976).

Lemma 4.5 Let q be a p-primary ideal of R, and E be an injective R-module. Then

E[q] = {x ∈ E | q x = 0}, if non-zero, is p-coprimary.

Proof Let r ∈ R. If r ∈ p, then rn ∈ q for some n ≥ 1, so that rn annihilates

E[q]. On the other hand, if r < p, then we can see that E[q] = rE[q] as follows. Let

x ∈ E[q]. Using the bar notation to denote the natural homomorphism from R to

R/ q, there is a homomorphism φ : R/ q→ E for which φ(b) = bx for all b ∈ R/ q.

As the diagram

0 // R/ q α //

φ
²²

R/ q

ψ
{{x

x
x

x
x

E

has exact row, there exists a homomorphism ψ : R/ q → E making the triangle

commutative. Thus x = φ(1) = ψ(r1) = rψ(1). Hence (since ψ(1) ∈ E[q]) we have

E[q] = rE[q], and the result follows. �

Lemma 4.6 Let a1, a2, . . . , an be ideals of R and E be an injective R-module. Then

n∑
i=1

E[ai] = E[
n⋂

i=1
ai].

Proof Let x ∈ E[
n⋂

i=1
ai]. Let π : R → R/

n⋂
i=1
ai and, for each i = 1, . . . ,n, πi : R →

R/ai, be the natural homomorphisms. There is a monomorphism

23



ξ : R/
n⋂

i=1
ai →

n⊕
i=1

(R/ai)

for which ξ(π(r)) = (π1(r), π2(r), . . . , πn(r)) for all r ∈ R. Also, there is a homomor-

phism η : R/
n⋂

i=1
ai → E for which η(π(r)) = rx for all r ∈ R.

Since E is injective, we may extend the following diagram

0 // R/
n⋂

i=1
ai

ξ //

η

²²

n⊕
i=1

(R/ai)

ζ

zzu
u

u
u

u

E

(which has exact row) by a homomorphism ζ :
n⊕

i=1
(R/ai) → E which makes

the extended diagram commute. Now x = η(π(1)) ∈ Im(ζ), and it is clear that

Im(ζ) ⊆
n∑

i=1
E[ai]. It follows that E[

n⋂
i=1
ai] ⊆

n∑
i=1

E[ai]. Since the reverse inclusion is

clear, we have that
n∑

i=1
E[ai] = E[

n⋂
i=1
ai]. �

Before we state the main theorem of this section, recall that an injective

R-module E is called an injective cogenerator of R if, for every R-module M and for

every non-zero m ∈M, there is a homomorphism ϕ : M→ E such that ϕ(m) , 0.

Theorem 4.2 Assume R is noetherian, and denote by Ass(R) the set of prime ideals

of R which belong to the zero ideal (for primary decomposition). Let E be an injective

R-module. Then E has a coprimary decomposition, and Coass(E) ⊆ Ass(R).

More precisely, let 0 = q1 ∩ q2 ∩ · · · ∩ qn be a minimal primary decomposition for

the zero ideal of R, with (for i=1,. . . ,n) qi a pi-primary ideal. Then

E = E[q1] + E[q2] + · · · + E[qn], (4.1)

and (for i=1,. . . ,n) E[qi] is either zero or pi-coprimary.

Moreover, if j is an integer such that 1 ≤ j ≤ n, and J = {1, . . . , j−1, j + 1, . . . , n},
then E =

∑
i∈J

E[qi] if and only if
⋂
i∈J
qi annihilates E; consequently, if E is an injective

cogenerator of R, then equation (4.1) is a minimal coprimary decomposition for E, and

Coass(E) = Ass(R).

Proof Lemma 4.5 shows that E[qi] is either zero or pi-coprimary, and Lemma

4.6 shows that E = E[0] = E[
n⋂

i=1
qi] =

n∑
i=1

E[qi]. The same lemma also provides the

information that if the integer j satisfies 1 ≤ j ≤ n, then
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∑
i∈J

E[qi] = E[
⋂
i∈J
qi];

the latter module is clearly equal to E if and only if
⋂
i∈J
qi annihilates E.

Now assume E is an injective cogenerator of R. To prove the final assertions

of the theorem, it is enough to show that for each j = 1, . . . , n, the ideal
⋂
i∈J
qi does

not annihilate E; it is therefore sufficient to show that if b is an arbitrary non-zero

ideal of R, then b does not annihilate E.

To this end, let y be a non-zero element of b. Since E is an injective

cogenerator of R, there exists a homomorphism φ : R → E such that φ(y) , 0.

Then yφ(1) = φ(y) , 0, so φ(1) is an element of E which is not annihilated by y,

and so not annihilated by b. This completes the proof. �

4.4. More General Facts about Coprimary and Representable Mod-

ules

For every R-module M we have Coass(M) ⊆ Att(M), and we show in

Lemma 4.10(i) that these sets coincide for representable modules. Since every

minimal prime ideal of the ideal Ann(M) is an element of Att(M), we have
⋂

Att(M) =
√

Ann(M) while for a =
⋂

Coass(M) in general we only have
∞⋂

i=1
aiM = 0. With the help of the set Att(M) we are able to describe coprimary

R-modules very easily:

Lemma 4.7 ((Zöschinger 1990), Lemma 1.1) Let R be a noetherian ring. For an

R-module M and a prime ideal p of R the following are equivalent:

(i) M is p-coprimary.

(ii) Att(M) = {p}.

(iii) Coass(M) = {p} and pe M = 0 for some e ≥ 1.

Proof (i) ⇒ (ii) For every coprimary module M,
√

Ann(M) is prime ideal, say

p, and then M is called p-coprimary. Now, if q ∈ Att M, q = Ann(M/U), it follows

Ann(M) ⊆ q. For all x ∈ q, xM ⊆ U ( M. Suppose U = M then q = Ann(M/M) =

R. This is a contradiction, so xM , M. Then xkM = 0, xk ∈ Ann(M), so x ∈
√

Ann M = p. Therefore q ⊆ p. On the other hand p =
√

Ann(M) =
⋂

Ann(M)⊆p
p ⊆ q,

p ⊆ q. Hence Att(M) = {p}
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(ii)⇒ (iii) Att(M) = {p}, p =
√

Ann(M/U) for some U ⊆M. Coass(M) = {p},
p = I(M/K) = {x ∈ R | xM + K , M} for some K ⊆ M where M/K is hollow. Since

for all x ∈ R xM = M or xkM = 0(k ≥ 1) we have xkM = 0 for some k ≥ 1. Then

x ∈ p, xkM = 0, and hence x ∈
√

Ann(M) ⊆ p.

(iii) ⇒ (i) For every R-module N we have
⋃

Coass(N) = {x ∈ R | xN , N},
so that here xkM = 0 always follows from xM , M, hence M is coprimary and
√

Ann(M) = p. �

We will give two corollaries of the above lemma. But first we need the

following result from (Zöschinger 1986).

Lemma 4.8 ((Bourbaki 1967), p.280, Corollary 1) If R is noetherian and p ∈
AssR(E ⊗R F), then p ∈ AssR(E) and p is the only prime ideal p of R such that

p ∈ AssR(F/ p F).

Lemma 4.9 ((Zöschinger 1986), Corollary 3.3) Let R be a noetherian ring. If A is a

finitely generated and M is an injective R-module, then

Coass(HomR(A,M)) = {p ∈ Ass(A) | AnnM(p) , 0}.
Proof Let p ∈ Coass(HomR(A,M)). Then by Lemma 3.3, p =

Ann(HomR(A,M)/U), where U ⊆ HomR(A,M), and an injective module Q

and a homomorphism f : HomR(A,M) → Q with Ker f = U. Now f ∈
Hom(HomR(A,M),Q) with Ann( f ) = p . For

Ann( f ) = {r ∈ R | r f = 0}
= {r | (r f )(α) = 0 for all α ∈ HomR(A,M)}
= {r ∈ R | rα ∈ U for all α ∈ HomR(A,M)}
= p .

Note that Hom(HomR(A,M),Q) � A ⊗ Hom(M,Q) = A ⊗R F. Therefore p ∈
Ass(A ⊗R F) since p is the annihilator of an element in A ⊗R F with the flat mod-

ule F = Hom(M,Q). By Lemma 4.8 p ∈ AssR(A) and since R/ p⊗RF � F/ pF,

we have (R/ p) ⊗R F , 0. Now 0 , (R/ p) ⊗R F = (R/ p) ⊗ Hom(M,Q) �

Hom(HomR(R/ p,M),Q) � Hom(AnnM(p),Q). Therefore AnnM(p) , 0.
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Conversely, let A be an R-module and p ∈ Ass(A), M injective and

AnnM(p) , 0. The monomorphism R/ p → A yields an epimorphism

HomR(A,M) → HomR((R/ p),M), and any q ∈ Coass(HomR((R/ p),M)) gives

q ∈ Ass(R/ p), i.e. q = p, so that p ∈ Coass(HomR(A,M)). �

Corollary 4.4 ((Zöschinger 1990), Corollary 1.2) Let M be a module over a noethe-

rian ring R and p be a prime ideal of R. Then we have:

(i) If p is a maximal element of Att(M), then the factor modules M/ pi M (i=1,2,3,. . . )

are all p-coprimary.

(ii) If U is a submodule of M such that U and M/U are p-coprimary, then also M is

p-coprimary.

(iii) If M is the injective hull of R/ p and a is an ideal of R, then for U = M[a] = AnnM(a)

we have: U is p-coprimary if and only if p is a minimal prime ideal of a.

Proof (i) immediately follows with Lemma 4.7(ii) as well as (ii) since Att(M) ⊆
Att(U)

⋃
Att(M/U).

(iii) U � HomR(R/a,M), so by the proof of Lemma 4.9 we have Att(U) =

{q ∈ Ass(R/a) | q ⊆ p} so that Att(U) = {p} is equivalent with a ⊆ p and p is the

minimal prime ideal of a. �

The next corollary was proved in Theorem 4.2 for the particular case A = R.

Corollary 4.5 ((Zöschinger 1990), Corollary 1.3) If M is injective and A is finitely

generated module over a noetherian ring R, then HomR(A,M) is representable.

Proof By A , 0 one can choose irreducible factors A/Ai such that
n⋂

i=1
Ai = 0, and

the monomorphism A→
n∏

i=1
(A/Ai) induces an epimorphism

n∏
i=1

HomR(A/Ai,M)→
HomR(A,M). For every Hi = HomR(A/Ai,M) again by Lemma 4.9 Att(Hi) = {q ∈
Ass(A/Ai) | M[q] , 0}, since | Ass(A/Ai) |= 1, hence | Att(Hi) |≤ 1, i.e. by the

lemma Hi is zero or coprimary. Therefore
n∏

i=1
Hi is representable, hence also the

factor module HomR(A,M) is. �

Proposition 4.4 Let R be a noetherian ring and M be an R-module. Let M1 + · · · + Mn

be a minimal coprimary decomposition of M where Mi is pi-coprimary, pi are prime ideals.

Then

{p1, . . . , pn} ⊆ Coass(M)
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Proof Let M = M1 + · · · + Mn be a minimal coprimary decomposition where

Mi(1 ≤ i ≤ n) is pi-coprimary. By the second isomorphism theorem we have

M/
n∑

j=1
i, j

M j � Mi/(Mi ∩
n∑

j=1
i, j

M j).

Since Mi is pi-coprimary, by Lemma 4.2 we have that Mi/(Mi ∩
n∑

j=1
i, j

M j) is pi-

coprimary for every i(1 ≤ i ≤ n). By Lemma 4.7 we have {pi} = Coass(M/
n∑

j=1
i, j

M j) ⊆

Coass(M) for every i(1 ≤ i ≤ n). Therefore {p1, . . . , pn} ⊆ Coass(M). �

Lemma 4.10 ((Zöschinger 1990), Lemma 1.4) For every representable module M

over a noetherian ring R we have:

(i) Coass(M) is finite and coincides with Att(M).

(ii) For every decomposition Coass(M) = X ∪ Y there is a representable submodule U

of M where Coass(U) = X and Coass(M/U) = Y.

(iii) For every ideal a of R there is e ≥ 1 where M[ae] + aM = M.

(iv) The radical part P(M) is again representable and the reduced part M/P(M) is

coatomic and semi-artinian. Besides, P(M) is coclosed in M.

Proof For M = 0, all statements are clear, so let M , 0 and M = U1 + · · · + Un be

a coprimary decomposition of M in which none of Ui is superfluous.

(i) Withpi =
√

Ann(Ui) we claim that Coass(M) = Att(M) = {p1, . . . , pn}. The

epimorphism U1×· · ·×Un −→M yields for every q ∈ Att(M) that q ∈ Att(U j) = {p j}
for some j ∈ {1, . . . , n}, hence Coass(M) ⊆ Att(M) ⊆ {p1, . . . , pn}. At n = 1 it is

finished. At n ≥ 2 for every i ∈ {1, . . . , n} where Ai = U1 + · · · + Ûi + · · · + Un we

have M/Ai , 0, so as factor module of Ui it is pi-coprimary, and it follows that

{pi} = Coass(M/Ai) ⊆ Coass(M).

(ii) Write Coass(M) = {q1, . . . , qk} with pairwise distinct qi, hence for every

j ∈ {1, . . . , k}, the submodule V j =
∑{Ui | pi = q j, 1 ≤ i ≤ n} is similarly q j-

coprimary and M = V1 + · · ·+Vk. By the given decomposition of Coass(M) we can

assume X = {q1, . . . , qs} and Y = {qs+1, . . . , qk}, and then achieve U = V1 + · · · + Vs

as desired: The epimorphisms V1 × · · · ×Vs → U and Vs+1 × · · · ×Vk →M/U show
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that Coass(U) ⊆ X and Coass(M/U) ⊆ Y, and therefore we have the equality in

both cases (since Coass(M) ⊆ Coass(U)
⋃

Coass(M/U)).

(iii) One can assume aM = M and then the Ui’s are numbered in such a

way that aUi , Ui for i ∈ {1, . . . , s} and aUi = Ui for rest of i. It follows that

a ⊆
√

Ann(Ui), hence Ui ⊂ M[ae] for some common e ≥ 1 and all i ≤ s, and

therefore M[ae] + aM = M.

(iv) Let P(M) , M and suppose U1, . . . ,Us are not radical, Ui are radical

for all i > s. For every i ≤ s there is a maximal ideal mi and an ei ≥ 1 with

mei
i Ui = 0, with b = me1

1 . . .m
es
s follows Ui ⊆M[b] for all i ≤ s, with B =

∑
i>s

Ui finally

M[b] + B = M. Since R/b is artinian and P(M)/B is annihilated by b, it follows

B = P(M), so does the first claim, and as factor module of M[b] also M/P(M) is

coatomic and semi-artinian. Finally, if A is a submodule of P(M) and P(M)/A is

small in M/A, as small cover of M/P(M) similarly M/A becomes coatomic, so by

(Zöschinger 1980, (Lemma 1.1)) it has no radical submodules and P(M)/A = 0

follows, i.e. P(M) is coclosed in M. �

Corollary 4.6 ((Zöschinger 1990), Corollary 1.5) A module M over a noetherian

ring R is representable if and only if P(M) is representable and there is an ideal b of

R such that R/b is artinian and M[b] + P(M) = M.

Proof If M is representable, then if P(M) , M in the last part of (iv) we have

constructed such an ideal b, and if P(M) = M we choose b = R. For the converse

it remains to show that N = M[b] is representable: For every m ∈ Ω, Lm(N) =
∞∑

i=1
N[mi] is at most non-zero, if b ⊆ m, and from me + b = me+1 + b it follows that

me ·Lm(N) is radical, so is zero. Hence in the decomposition N =
⊕
m∈Ω

Lm(N) almost

all summands are zero and the others are coprimary. �

In particular, if M is reduced, i.e. P(M) = 0 one obtains:

Corollary 4.7 ((Zöschinger 1990), Corollary 1.6) Let R be a noetherian ring. A re-

duced R-module M is representable if and only if R/Ann(M) is artinian.

Remark to Lemma. From part (ii) it follows for an arbitrary R-module

M: If Y is a finite subset of Coass(M), then there is a submodule U of M where

Coass(M/U) = Y. (To prove it choose an artinian factor module M/M0 where

Y ⊆ Coass(M/M0) and apply it on (ii).) But for infinite Y it is no longer valid. For
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example, if (R,m) is a local integral domain with dim(R) > 1 and M =
∞∐

i=1
R/mi, then

there are infinitely many pairwise distinct prime ideals p1, p2, p3, . . . of height 1

such that Y = {p1, p2, p3, . . .} is a subset of Coass(M) = Spec(R), but by (Zöschinger

1988, Corollary 1.6) there exists no R-module N with Coass(N) = Y in general.

Finally, if X is a non-empty subset of Coass(M)\{m}, there is no submodule U of

M where Coass(U) = X since M is reduced.

Lemma 4.11 ((Zöschinger 1990), Lemma 1.7) Let M be a module over a noetherian

ring R and S be a multiplicative subset of R such that all elements of S act bijectively on M.

M is coprimary (representable) as R-module if and only if MS is coprimary (representable)

as RS-module.

Proof For an arbitrary S, the map AttRS(MS) 3 P 7→ P⋂
R ∈ AttR(M) is well-

defined and injective. Hence if MS , 0 and M is p-coprimary, we must have

p
⋂

S = ∅ by Lemma 4.7 and MS must be pRS-coprimary as RS-module (see

also(Macdonald 1973, p.27). But if M has a representation M = U1 + · · ·+ Un with

coprimary Ui, then in MS = U1S + · · · + UnS all UiS are as above zero or coprimary,

so that MS is also representable as RS-module.

Now if all s ∈ S act bijectively on M, then the above map AttRS(MS) 3 P 7→
P⋂

R ∈ AttR(M) becomes also surjective, and again with Lemma 4.7 the claim

follows over “coprimary”. But if MS has a representation MS = X1 + · · · + Xn

with coprimary RS-submodules Xi, with Ui = {a ∈ M | a
1
∈ Xi} it follows that

M = U1 + · · · + Un and every Ui is an S-divisible submodule of M where UiS � Xi,

hence as above Ui is a coprimary R-module and therefore M is representable. �

Corollary 4.8 ((Zöschinger 1990), Corollary 1.8) Let R be a noetherian ring. Every

radical hollow R-module is coprimary.

Proof As it is well-known a module M is called hollow if M , 0 and M = U1 +U2

always implies U1 = M or U2 = M. In this case p = {x ∈ R | xM , M} is a

prime ideal and Coass(M) = {p}, furthermore there is m ∈ Ω in such a way that

for all 0 , a ∈ M the ring R/Ann(a) is local with the unique maximal ideal m

(see (Zöschinger 1986, p.3)). Therefore S = R\m satisfies the assumptions in the

lemma, because for every a ∈ M and s ∈ S, < s > + Ann(a) = R, i.e. a = rsa for

some r ∈ R. In addition, if M is radical, the last formula shows that MS is also
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radical and hollow as RS-module, now CoassRS(MS) = {P} implies, since RS is

local, by (Zöschinger 1988, Corollary 1.3) Pe ·MS = 0, so that MS is coprimary as

RS-module, so also M is as R-module. �

Corollary 4.9 ((Zöschinger 1990), Corollary 1.9) Let R be a noetherian ring. Let

M be an R-module of finite Goldie dimension, such that Ass(M) is discrete and every

non-zero-divisor acts bijectively on M. Then for every finitely generated R-module A we

have that HomR(A,M) is representable.

Proof Every element of S = R\⋃ Ass(M) acts bijectively on M, hence also does

on H = HomR(A,M). By the lemma it suffices to show that HS is artinian as RS-

module: Clearly, MS is also finite dimensional as RS-module, and since Ass(M) is

finite and discrete, everyP ∈ AssRS(MS) is a maximal ideal in the ring RS, i.e. MS is

semi-artinian. Thus by Matlis, MS is even artinian, so also HomRS(AS,MS) � HS �

Lemma 4.12 ((Zöschinger 1990), Lemma 2.3) Let M be a module over a noetherian

ring R. If U is an artinian submodule of M and M/U is representable, then M is also

representable.

Proof First let M/U be q-coprimary. For a supplement V0 of U in M, i.e. a mini-

mal element in the set {V ⊆ M | V + U = M} we have Coass(V0) = Coass(M/U) =

{q}, in particular,
∞⋂

i=1
qiV0 = 0. From qe(M/U) = 0 but also qeV0 ⊆ U follows, hence

q f V0 = 0 for some f ≥ e, and by Lemma 4.7 it implies that V0 is q-coprimary, so

with U also V0 + U = M is representable.

If M/U is only representable, it follows with a coprimary decomposition

M/U = (M1/U) + · · · + (Mn/U) that by the first step, all Mi are representable, so

also M = M1 + · · · + Mn is. �

4.5. Modules those Att(M) is Discrete are Representable

Theorem 4.3 ((Zöschinger 1990), Lemma 3.1) Let M be a module over a noetherian

ring R and p ∈ Spec(R) be simultaneously a minimal and a maximal element of Att(M).

Then for V =
⋂{sM | s ∈ R\ p} we have:

(i) V is the largest p-coprimary submodule of M.

(ii) V is the unique supplement of pM in M.
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(iii) There is an e ≥ 1 where pe M = pe+1 M, and hence V = Ann(pe M) ·M.

Proof Since R is noetherian, there is an e ≥ 1 where Ann(pe M) = Ann(pe+1 M),

and we claim that p can not be a minimal prime ideal over c = Ann(pe M): Oth-

erwise, we would have p = Ann(r) for some r ∈ R/c, r < Ann(pe+1 M) results from

r , 0, i.e. rt < c for some t ∈ p, and this is impossible.

Now if p is a minimal and maximal element of Att(M), we have cM+pM =

M: Otherwise we would have q ∈ Att(M) where c + p ⊆ q, and c ⊆ p follows

from p = q, so that p is also minimal over c which contradicts the preliminary

note. In particular, we obtain from c pe M = 0 that pe M = pe+1 M. Moreover, cM

is a supplement of pM, because from X ⊆ cM, X + pM = M we have cX = cM,

hence X = cM, and the same proof shows that cM is the unique supplement of

pM. Since Coass(cM) = Coass(M/ pM) = {p}, by Lemma 4.7, cM is p-coprimary,

in particular cM ⊆ V, and as a result of c * p we have an s0 ∈ c ∩ R\ p such that

V = cM follows from V ⊆ s0M ⊆ cM and all of the three parts are proved. �

Theorem 4.4 ((Zöschinger 1990), Theorem 3.2) Let M be a module over a noethe-

rian ring R. If Att(M) is discrete, then M is representable. By M , 0 we have: If q1, . . . , qk

are the pairwise distinct elements of Att(M), then Vi =
⋂{sM | s ∈ R\qi} is the largest

qi-coprimary submodule of M (1 ≤ i ≤ k) and M = V1 + · · · + Vk.

Proof By Lemma 4.3(i) it is only the last claim to show, and for this let M′ =

V1 + · · ·+ Vk. By Lemma 4.3(ii), Vi +qiM = M holds for all i, with a = q1 . . . qk hence

M′+aM = M. But anM = 0 for some n ≥ 1 follows from a ⊆ ⋂
Att(M) =

√
Ann(M),

so M = M′. �
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CHAPTER 5

UNIQUENESS OF COPRIMARY DECOMPOSITION

Throughout this chapter R is a commutative ring which is not necessarily

noetherian. Now we want to study the extent to which the minimal decomposition

on page 19 is unique. In order to do that for every multiplicatively closed subset

S of R and every R-module M, we introduce a module SM =
⋂
s∈S

sM. Note that

when S is empty SM = M.

Proposition 5.1 ((Kirby 1973), Proposition 5) Let M = M1 + · · · + Mk be an R-

module, where Mi is a pi-coprimary module, and let S be a multiplicatively closed subset of

R. If S has empty intersection with p1, . . . , pl and non-empty intersection with pl+1, . . . , pk,

then
SM = M1 + · · · + Ml.

Proof Suppose that s ∈ S; so s < pi(i = 1, . . . , l) and

sM = sM1 + · · · + sMk ⊇M1 + · · · + Ml.

Therefore SM ⊇M1 + · · · + Ml.

Conversely, as pi ∩S is non-empty (i = l + 1, . . . , k), there exists si ∈ pi ∩S

and s =
k∏

l+1
si ∈ pi ∩S for i = l + 1, . . . , k. But pi =

√
Ann(Mi); so there exists an

integer t such that stMi = 0 (i = l + 1, . . . , k). However st ∈ S, so st < pi (i = 1, . . . , l).

Therefore stMi = Mi (i = 1, . . . , l), and

SM ⊆ stM = stM1 + · · · + stMk = M1 + · · · + Ml,

which completes the proof. �

Theorem 5.1 ((Kirby 1973), Theorem 2) Let M = M1 + · · · + Mk and M = M′
1 +

· · ·+ M′
l be two minimal coprimary decompositions of M. Let Mi be pi-coprimary and M′

j

be p′j-coprimary. Then k = l and the sets {p1, . . . , pk} and {p′1, . . . , p′l} coincide.

Proof Let p be any one of p1, . . . , pk. It suffices to prove that p is contained in

{p′1, . . . , p′l }. We first renumber the Mi, M′
j such that p ) pi for 1 ≤ i < m, p = pm,
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p + pi for m < i ≤ k, p ⊇ p′j for 1 ≤ j ≤ n, and p + p′j for n < j ≤ l. Put S = R\ p;

then, by Proposition 5.1,

M1 + · · · + Mm = SM = M′
1 + · · · + M′

n.

Suppose p ) p′j for 1 ≤ j ≤ n; so there exists r ∈ p such that r < pi (1 ≤ i < m)

and r < p′j (1 ≤ j ≤ n) (see, for example,(Northcott 1968, p.81,Proposition 5)).

Now

r ∈ p =
√

Ann(Mm) implies rtMm = 0 for some integer t,

r < pi =
√

Ann Mi implies rMi = Mi(1 ≤ i < m) and

r < p′j =
√

Ann M′
j implies rM′

j = M′
j.

Therefore

M1 + · · · + Mm−1 = rt(SM) = M′
1 + · · · + M′

n,

and

M1 + · · · + Mm−1 = M1 + · · · + Mm,

which contradicts the minimality of the decomposition M = M1 + · · ·+ Mk. Hence

p = p′j for some j satisfying 1 ≤ j ≤ n, and the theorem is proved. �
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CHAPTER 6

CONCLUSION

In this thesis we studied about existence and uniqueness of coprimary

decomposition of modules. To do this, we searched the literature and for the case

of the modules over commutative noetherian rings we studied (Zöschinger 1990).

To investigate coassociated prime ideals as dual notion of associated prime ideals

we mainly studied (Zöschinger 1983) and (Zöschinger 1988).
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Zöschinger, H. 1982. Gelfandringe und Koabgeschlossene Untermoduln. Bayer.
Akad. Wiss., Math.-Naturw. Kl., S. B. 3:43-70.
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