Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/3860
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAlizade, Rafailen
dc.contributor.authorÇeliköz, Zafer-
dc.date.accessioned2014-07-22T13:52:31Z-
dc.date.available2014-07-22T13:52:31Z-
dc.date.issued2007en
dc.identifier.urihttp://hdl.handle.net/11147/3860-
dc.descriptionThesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2007en
dc.descriptionIncludes bibliographical references (leaves: 66-67)en
dc.descriptionText in English; Abstract: Turkish and Englishen
dc.descriptionvi, 67 leavesen
dc.description.abstractIn this thesis we study theK -elements of extension modules where R is a principal ideal domain. In general K -elements need not form a submodule in an extension module but if C is divisible and almost all primary components of C are zero, they coincide with torsion elements of extension module. If C is divisible and torsion, not all primary components of C are zero, andAis torsion free ok rank 1 then a nonzero element of extension module is a K-element if and only if the type of the element in extension module is less than or equal to the type of A. Also we define B-elements which form a submodule of extension module and study their relation with K-elements.en
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.lccQA247. C39 2007en
dc.subject.lcshModules (Algebra)en
dc.subject.lcshSequences (Mathematics)en
dc.titleSubmodules that have supplementsen_US
dc.typeMaster Thesisen_US
dc.institutionauthorÇeliköz, Zafer-
dc.departmentThesis (Master)--İzmir Institute of Technology, Mathematicsen_US
dc.relation.publicationcategoryTezen_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeMaster Thesis-
item.languageiso639-1en-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
T000661.pdfMasterThesis386.75 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

588
checked on Nov 18, 2024

Download(s)

522
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.