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İZMİR



We approve the thesis of Zafer ÇELİKÖZ
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İzmir Institute of Technology

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 July 2007
Assist. Prof. Dr. Engin MERMUT
Department of Mathematics
Dokuz Eylül University

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 July 2007

Prof. Dr. Oğuz YILMAZ
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ABSTRACT

SUBMODULES THAT HAVE SUPPLEMENTS

In this thesis we study the κ-elements of extension modules where R is a

principal ideal domain. In general κ-elements need not form a submodule in an

extension module but if C is divisible and almost all primary components of C are

zero, they coincide with torsion elements of extension module. If C is divisible

and torsion, not all primary components of C are zero, and A is torsion-free of

rank 1, then a nonzero element of extension module is a κ-element if and only if

the type of the element in extension module is less than or equal to the type of

A. Also we define β-elements which form a submodule of extension module and

study their relation with κ-elements.
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ÖZET

TÜMLEYENİ OLAN ALTMODÜLLER

Bu tezde, R temel idealler bölgesi olmak üzere genişleme modülünün κ-

elemanları incelenmiştir. Genel durumda κ-elemanlar genişleme modülünün bir

altmodülünü oluşturmayabilir, fakat C bölünebilir modül ise ve C’nin hemen

hemen tüm asal bileşenleri sıfır ise, κ-elemanlar genişleme modülünün burulma

elemanlarıyla çakışıyor. C bölünebilir burulma modülü ise, C’nin asal bileşenleri

hepsi aynı anda sıfır değilse, ve A rankı 1 olan burulmasız modül ise, genişleme

modülünün sıfırdan farklı elemanının κ-eleman olması için gerek ve yeterli koşul

elemanın genişleme modülündeki tipinin A’nın tipinden küçük veya eşit ol-

masıdır. Ayrıca genişleme modülünün bir altmodülünü oluşturan β-elemanları

tanımladık ve bunların κ-elemanlarla bağlantılarını inceledik.
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CHAPTER 1

INTRODUCTION

In order to study the structure of the module ExtR(C,A), one can try to

determine the elements of the standard submodules, e.g. in the case of abelian

groups divisible part of D(Ext(C,A)), Ulm’s subgroup Ext(C,A)1, Frattini subgroup

Rad(Ext(C,A)) or torsion subgroup T(Ext(C,A)) in details as in (Fuchs 1970).

Interpreting Ext(C,A) as a module of extensions of A by C, the question is to find

the properties of the short exact sequence

E = 0 // A α // B
β // C // 0

of modules so that equivalence class [E] is an element of the prescript submodule

of ExtR(C,A). For example, in a well-known manner, [E] belongs to D(Ext(C,A))

if and only if Imα is a direct summand in Imα + T(B) (see e.g. (Fuchs 1970)).

Conversely, given any class C of short exact sequences of modules, the

problem of finding the corresponding elements in the module ExtR(C,A) arises.

Perhaps the best known example is the class P of pure-exact sequences: if R

is a principal ideal domain the elements of ExtR(C,A) with the representation

from P form a submodule PextR(C,A) which coincides with Ulm’s submodule

ExtR(C,A)1. Our interest in this thesis is the class of κ-exact sequences, where E

is called κ-exact if Imα has a supplement in B, i.e. a minimal element in the set

{V ⊂ B|V + Imα = B}. In this case we say that [E] ∈ ExtR(C,A) is a κ-element and

the set of all κ-elements will be denoted by ExtR(C,A)κ. For abelian groups the

properties of κ-elements were studied in (Zöschinger 1978). We generalize these

results and give the “description” of κ-elements for modules over a principal ideal

domain R in the following two cases:

(I) C is divisible and almost all primary components of C are zero. In this case

the κ-elements coincide with torsion elements of ExtR(C,A) for arbitrary A.

(II) C is divisible and torsion, primary components of C are all nonzero, and A

is torsion-free of rank 1. Although then ExtR(C,A) is torsion-free, there are still

sufficiently many κ-elements in ExtR(C,A), because as it will be shown in Chapter
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7, they form a generating system. And from our main result Theorem 7.1 it follows:

0 , [E] ∈ ExtR(C,A) is a κ-element if and only if the type of [E] in ExtR(C,A) is less

than or equal to the type of A.

In Chapter 3, the relation between torsion and κ-elements of ExtR(C,A) is

investigated where a “functorial” subgroup ExtR(C,A)β is introduced as the set of

elements [0 // A α // B // C // 0] such that Imα has a supplement V in B

and such that V ∩ Imα is bounded. Although in general ExtR(C,A)β $ ExtR(C,A)κ

holds, certain statements about ExtR(C,A)β can be used while studyingκ-elements.

For example: If ExtR(C,A)β ⊂ Rad(ExtR(C,A)) holds, then it follows ExtR(C,A)β = 0

and we will show the same in for κ instead of β Theorem 5.1.

Since the κ-elements are preserved under Ext(g, f ) : ExtR(C,A) →
ExtR(C ′,A′) with respect to the second variable, but not the first variable (and

therefore ExtR(C,A)κ need not be a submodule), we study in Chapter 4, the ho-

momorphisms g : C ′ → C where we have the decomposition g = β ◦ α: If β is a

small epimorphism (i.e. surjective with small kernel), then β is an isomorphism.

We call it coneat and show that this is equivalent with g(Soc(C ′)) = Soc(C). And

for such g, also g∗ : ExtR(C,A)→ ExtR(C ′,A) preserves κ-elements. Together with

the dual concept of neat homomorphisms, like the concept of Enochs introduced

while studying torsion-free coverings, it will be shown in Theorem 4.3 the functors

Hom resp. Ext preserves neat (coneat) homomorphisms (and other variations).

In Chapter 5, the question when ExtR(C,A)κ = ExtR(C,A)β is investigated.

The extremal case ExtR(C,A)κ = 0 is quickly solved by Theorem 3.2: There is no

κ-element in Ext(C,A) if and only if the inequality Tp(C) , 0 implies the divisibility

of Tp(A), and if, all Tp(C) , 0, A is already divisible. Theorem 5.2 gives the answer

to the original question at least in the case when T(A) is a direct summand of A.

Chapter 6 summarizes the results about p-height, the property of divis-

ibility, which we call the p-depth of x ∈ G: tG
p (x) is defined as the smallest p-

power which divides x, but the quotient is no more divisible by prime element

p of R. By the introduction of this depth concept we can reduce the condi-

tion “C divisible”, in the case(II) which is mentioned above and with its help

we measure the complement characteristics of x ∈ ExtR(C,A). For x ∈ G we

have tG
p (x) = min(hG

p (x), tG
p (0)), and for ϕ ∈ Hom(M,R(p∞)), we obtain the formula
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tHom
p (ϕ) = in f {i ∈N |M[p] * pi(Kerϕ)}. Finally we point to the characterization of

tG
p (0) which is the dual statement of a well-known Theorem of Khabbaz (Khabbaz

1961): If, V is a supplement of G[pn] in G, then V is a direct summand in G.

In the last two chapters, C is torsion, and A is torsion-free of rank 1.

Everything follows from the main result Theorem 7.1: 0 , [E] is an κ-element

in ExtR(C,A) if and only if the primary components of C are all nonzero and

the depth of the class of [E] in ExtR(C,A) less than or equal to the type of A.

Simple criteria for the fact is that ExtR(C,A) consists only of κ-elements or that

g∗ : ExtR(C,A) → ExtR(C ′,A) preserves κ-elements. And it is shown in Theorem

7.3 that, difference between depth and height gives really different supplement

concepts. Since in the sequence [E], given above in which Imα is small in B, T(B)

need not be splitting in B, we give a “Splitting Criterion” which is interesting

itself.

In Chapter 8, we consider a triple Imα ⊂ X ⊂ B, such that Imα has a

supplement in X and X has a supplement in B. Also these elements of ExtR(C,A)

give a depth sequence described in Theorem 8.1, and it is shown that the κ-

elements form a proper big subset.

Throughout R is a principal ideal domain. By module we will mean a

left R-module. K is the field of fractions of R. We write R(p∞) for the p-primary

component of K/R. If a module has a composition series 0 = M0 $ M1 $ . . . $

Mn = M, M is called a module of length n, and is denoted by L(M). For a

homomorphism α : A→ B, Cokerα = B/ Imα. “U is a direct summand in M” and

“U has a supplement in M” will be denoted by U ⊂⊕ M and U ⊂κ M respectively.

For undefined terms and simple facts see (Fuchs and Salce 2001) and (Kaplansky

1969).
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CHAPTER 2

PRELIMINARIES

This Chapter is a short summary of Chapter IX from (Fuchs 1970) and

Chapter 3 from (Mac Lane 1995), so one can find missing proofs in (Fuchs 1970)

and (Mac Lane 1995).

2.1. Extensions as Short Exact Sequences

If the extension B of A by C is visualized as an exact sequence

0 // A
µ // B ν // C // 0 ,

then one can try to build up a category in which the objects are just the short exact

sequences. An adequate definition of a morphism between two exact sequences

is rather clear: it is a triple (α, β, γ) of module homomorphisms such that the

diagram

(1)

E : 0 // A
µ //

α
²²

B ν //

β
²²

C //

γ

²²

0

E ′ : 0 // A′
µ ′ // B′ ν ′ // C ′ // 0

has commutative squares. It is straightforward to show that in this way a category

E arises.

In accordance with the definition of equivalent extensions, we say that the

extensions E and E ′ with A = A ′, C = C ′ are equivalent, in sign: E ≡ E ′, if there is a

morphism (1A, β, 1C) with β : B→ B ′ is an isomorphism. Actually, the condition

β being an isomorphism can be omitted, since this follows from (Fuchs 1970) (2.3).

First we study extensions with A fixed. If γ : C ′ → C is any homomor-

phism, then to the extension E in (1), there is, by (Fuchs 1970) (10.1), a pullback

square

B ′ ν ′ //

β
²²

C ′

γ

²²
0 // A

µ // B ν // C // 0

4



with suitable B ′, β and ν ′. From (Fuchs 1970) 10 we know that ν ′ is epic [since ν is

epic], and a glance at (3) in (Fuchs 1970) 10 shows that Ker ν ′ � Ker ν � A, hence

there is a monomorphism µ ′ : A→ B ′ [namely, µ ′a = (µa, 0) ∈ B ′ if B ′ 5 B ⊕ C ′ ]

such that the diagram

Eγ : 0 // A
µ ′ // B ′ ν ′ //

β

²²

C ′ //

γ

²²

0

E : 0 // A
µ // B ν // C // 0

with exact rows and pullback right square commutes. The top row is an extension

of A by C ′which we have denoted by Eγ to indicate its origin from E and γ. Notice

that γ∗ = (1A, β, γ) is a morphism Eγ→ E in E .

If the diagram

E ◦ : 0 // A ◦
µ◦ // B ′ ν ◦ //

β ◦

²²

C ′ //

γ

²²

0

E : 0 // A
µ // B ν // C // 0

has exact rows and commutes, then by (Fuchs 1970) (10.1) there is a unique

φ : B ◦ → B ′ such that ν ′φ = ν ◦ and βφ = β ◦. Since the maps φµ ◦, µ ′ : A → B ′

are such that β(φµ ◦) = β ◦µ ◦ = µ = βµ ′ and ν ′(φµ ◦) = ν ◦µ ◦ = 0 = ν ′µ ′, the

uniqueness assertion in (Fuchs 1970) (10.1) implies φµ ◦ = µ ′. This shows that Eγ

is unique up equivalence and this yields the equivalences

E1C ≡ E and E(γγ ′) ≡ (Eγ)γ ′

for C ′′
γ ′ // C ′

γ // C . Now the contravariance of E on C is evident.

Next we keep C fixed and let A vary. Given α : A → A ′, let B ′ be defined

by the pushout square

0 // A
µ //

α
²²

B ν //

β
²²

C // 0

A ′
µ ′ // B ′

Here µ ′ is a monomorphism. Moreover, if B ′ is defined as a quotient module of

A ′ ⊕ B, then ν ′(a ′, b) + H = νb makes the diagram

E : 0 // A
µ //

α
²²

B ν //

β
²²

C // 0

αE : 0 // A′
µ ′ // B′ ν ′ // C // 0

5



with exact rows commutative. The bottom row is an extension of A ′ by C which

we have denoted by αE. Here α∗ = (α, β, 1C) is a morphism E→ αE in E .

If

E : 0 // A
µ //

α
²²

B ν //

β◦
²²

C // 0

E◦ : 0 // A′
µ◦ // B◦

ν◦ // C // 0

is a commutative diagram with exact rows, then in view of (Fuchs 1970) (10.2)

there exists a unique φ : B ′ → B◦ such that φβ = β◦ and φµ ′ = µ◦. From

(ν◦φ)β = ν◦β◦ = νν ′β, (ν◦φ)µ ′ = 0 = ν ′µ ′we infer that ν◦φ = ν ′, thus (1A ′ , φ, 1C) is

a morphism αE→ E◦. Consequently, αE ≡ E◦, i.e., αE is unique up to equivalence.

Hence

1AE ≡ E and (αα ′)E ≡ α(α ′E)

for A α // A ′ α ′ // A ′′ , establishing the covariant dependence of E on A.

With α : A→ A ′ and γ : C ′ → C we have the important associative law

(2) α(Eγ) ≡ (αE)γ.

Indeed, by making use of the pullback property of (αE)γ, it is easy to prove the

existence of a morphism (α, β ′, 1) : Eγ → (αE)γ and to show the commutativity

of the square

Eγ
(1, β1, γ) //

(α, β ′, 1)
²²

E

(α, β2, 1)
²²

(αE)γ
(1, β, γ) // αE.

Assume we are given two extensions E1 and E2 of A by C. The extensions

of A by C [more correctly their equivalence classes] form a module.

In order to describe the module operation in the language of short exact

sequences, we make use of diagonal map 4G : g 7→ (g, g) and the codiagonal map

∇G : (g1, g2) 7→ g1 + g2 of a module G. If we understand by the direct sum of two

extensions

Ei : 0 // Ai
µi // Bi

νi // Ci
// 0 (i = 1, 2)

the extension

E1 ⊕ E2 : 0 // A1 ⊕ A2
µ1⊕µ2 // B1 ⊕ B2

ν1⊕ν2 // C1 ⊕ C2
// 0 ,

then we have :

6



Proposition 2.1 The sum of extensions E1, E2 of A by C is the extension

(3) E1 + E2 = ∇A(E1 ⊕ E2)4C.

Proof What we have to verify is that if fi : C×C→ A is a factor set belonging to

Ei (i = 1, 2), then f1+ f2 belongs to∇A(E1⊕E2)4C. Clearly, ( f1(c1, c2), f2(c1
′, c2

′)) with

ci, ci
′ ∈ C is a factor set belonging to the direct sum E1⊕E2, and ( f1(c1, c2), f2(c1, c2))

is one corresponding to (E1 ⊕ E2)4C. An application of ∇A yields the factor set

f1(c1, c2) + f2(c1, c2). �

It is of course possible to avoid any reference to factor sets and to develop

extensions solely qua short exact sequences. In doing so, (3) would serve as the

definition of the sum of extensions and then Proposition 2.1 should be replaced

by the assertion that E1 + E2 is actually an extension of A by C which stays in

the same equivalence class if E1 and E2 are replaced by equivalent extensions,

and moreover, the equivalence classes of extensions form a module under this

operation.

From what has been said above about the factor sets belonging to Eγ and

αE it is now evident that for some homomorphisms α : A → A ′ and γ : C ′ → C,

the following equivalences hold true for extensions E1, E2, E of A by C:

(4) α(E1 + E2) ≡ αE1 + αE2, (E1 + E2)γ ≡ E1γ + E2γ,

(5) (α1 + α2)E ≡ α1E + α2E, E(γ1 + γ2) ≡ Eγ1 + Eγ2.

The equivalences of (4) express the fact that α∗ : E 7→ αE and γ∗E 7→ Eγ are module

homomorphisms

α∗ : ExtR(C,A)→ ExtR(C,A ′), γ∗ : ExtR(C,A)→ ExtR(C ′,A),

while (5) asserts that (α1 + α2)∗ = (α1)∗ + (α2)∗ and (γ1 + γ2)∗ = (γ1)∗ + (γ2)∗, i.e., the

correspondence

ExtR : C × A 7→ ExtR(C,A), γ × α 7→ γ∗α∗ = α∗γ∗

is an additive bifunctor on A ×A to A [the last equality is just another form of

(2)].

Theorem 2.1 ExtR is an additive bifunctor on A ×A to A which is contravariant in

the first and covariant in the second variable. �

In order to be consistent with the functorial notation for homomorphisms,

we shall use the notation

7



ExtR(γ, α) : ExtR(C,A)→ ExtR(C ′,A ′)

instead of γ∗α∗ = α∗γ∗; that is, ExtR(γ, α) acts as shown by

ExtR(γ, α) : E 7→ αEγ.

Let us keep in the mind that if the extension E is given by (1), then for

γ : C ′ → C, Eγ is represented by 0 // A
µ ′ // B ′ ν ′ // C ′ // 0 where

(6) B ′ = {(b, c ′) | b ∈ B, c ′ ∈ C ′, νb = γc ′}, µ ′a = (µa, 0), ν ′(b, c ′) = c ′,

and for α : A→ A ′, αE is represented by 0 // A ′
µ ′ // B ′ ν ′ // C // 0 where

B ′ = {(a ′ + b) + H | a ′ ∈ A ′, b ∈ B},
(7)

µ ′a ′ = (a ′, 0) + H, ν ′((a ′, b) + H) = νb

with H = {(αa − µa) | a ∈ A}. These formulas for Eγ and αE are helpful in

subsequent computations.

2.2. Exact Sequences for ExtR

As we have seen in the preceding section, ExtR is a functor in both of its

variables. The main result of this section states that this functor is right exact,

moreover, the exact sequences on Hom and ExtR can be amalgamated into long

exact sequences.

Given an extension

(1) E : 0 // A α // B
β // C // 0

representing an element of ExtR(C,A), and a homomorphism η : A→ G, we know

from the preceding section that ηE is an extension of G by C, i.e., ηE represents an

element of ExtR(C,G). In this way we get a map

E∗ : Hom(A,G)→ ExtR(C,G)

defined as

E∗ : η 7→ ηE.

8



Analogously, a homomorphism ξ : G→ C yields from E an extension Eξ of A by

G, and

E∗ : Hom(G,C)→ ExtR(G,A)

is a map acting as follows:

E∗ : ξ 7→ Eξ.

From (5) in the previous section it results at once that E∗ and E∗ are homomor-

phisms. They are natural, for if φ : G → H is any homomorphism, then because

of (φη)E ≡ φ(ηE) and E(ξφ) ≡ (Eξ)φ the diagrams

Hom(A,G) //

²²

ExtR(C,G)

²²

Hom(H,C) //

²²

ExtR(H,A)

²²
Hom(A,H) // ExtR(C,H) Hom(G,C) // ExtR(G,A)

with the obvious maps commute. E∗ and E∗ are called connecting homomorphisms

for the short exact sequence (1). This terminology is justified in the light of

Theorem 2.2.

Before stating this theorem, we prove two technical lemmas.

Lemma 2.1 Given a diagram

E : 0 // A α //

η

²²

B
β //

ξÄÄ¡
¡

¡
¡

C // 0

G

with exact row, there exists a ξ : B → G making the triangle commute if and only if ηE

splits.

Proof If there is such a ξ, then the diagram

E : 0 // A α //

η

²²

B
β //

(ξ⊕β)4
²²

C // 0

0 // G
(1G⊕0)4 // G ⊕ C

∇(0⊕1C) // C // 0

commutes hence the bottom row is≡ ηE. Conversely, ifηE : 0→ G→ B ′ → C→ 0

splits, then B → B ′ followed by the projection B ′ → G yields a map ξ with the

desired property. �

9



The dual of this argument establishes the exact dual of preceding lemma:

Lemma 2.2 If the diagram

G
η

²²

ξ

ÄÄ¡
¡

¡
¡

E : 0 // A α // B
β // C // 0

has exact row, then there is a ξ : G→ B such that βξ = η if, and only if, Eη splits.

With the aid of these lemmas, the following theorem on the exact sequences for

ExtR becomes a straightforward, though mildly intricate calculation.

Theorem 2.2 If (1) is an exact sequence, then the sequences

(2)

0 // Hom(C,G) // Hom(B,G) // Hom(A,G) //

E∗ // ExtR(C,G)
β∗ // ExtR(B,G) α∗ // ExtR(A,G) // 0,

(3)

0 // Hom(G,A) // Hom(G,B) // Hom(G,C) //

E∗ // ExtR(G,A)
β∗ // ExtR(G,B) α∗ // ExtR(G,C) // 0,

are exact for every module G.

Proof Owing to (Fuchs 1970) (44.4) we may begin the proof of exactness of

(2) at Hom(A,G). We have to show that η : A → G is extendable to ξ : B → G

exactly if ηE ∈ ExtR(C,G) is splitting; but this is just the statement of Lemma 2.1.

The next step is to show the exactness at ExtR(C,G). By Lemma 2.2, Eβ splits,

thus for η ∈ Hom(A,G), β∗E∗η = ηEβ = 0. Let E1 : 0 // G
µ // H ν // C // 0

∈ ExtR(C,G) be such that E1β splits. By Lemma 2.2, there is a ξ : B → H such

that νξ = β. Since νξα = βα = 0 by (Fuchs 1970) (2.1) there is an η : A → G

satisfying µν = ξα, hence (η, ξ, 1C) maps E upon E1, i.e., E1 = ηE. To show

exactness at ExtR(B,G), notice that obviously α∗β∗ = (βα)∗ = 0∗ = 0. Conversely, to

prove that the kernel is contained in image, let E2 : 0 // G
µ // H nu // B // 0

∈ ExtR(B,G) satisfy E2α = 0. By Lemma 2.2, there is a ξ : A→ H such that νξ = α;

ξ is monic. Since βνξ = βα = 0, there is a λ : H/ξA → C such that βν = λρ

with ρ : H → H/ξA the canonical map. Consequently, we have a commutative
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diagram

0

²²

0

²²
0

²²

// A
ξ

²²

A //

α
²²

0

E2 : 0 // G
µ // H ν //

ρ

²²

B //

β

²²

0

0 // G
ρµ //

²²

H/ξA λ //

²²

C //

²²

0

0 0 0

where all three columns and the first two rows are exact. By the 3× 3- lemma, the

bottom row is exact, hence it represents an element of ExtR(C,G) that is mapped by

β∗ upon E2. The exactness of (2) at ExtR(A,G) express the fact that every extension

of G by A can be prolonged to one of G by B: this is true as is shown by (Fuchs

1970) (24.6).

Turning to proof of (3), by (Fuchs 1970) (44.4) and Lemma 2.2 we may

begin the proof at ExtR(G,A). For η ∈ Hom(G,C), α∗E∗η = αEη = 0, as αE splits

because of Lemma 2.2. Assume E1 : 0 // A
µ // H ν // G // 0 ∈ ExtR(G,A)

satisfies αE1 = 0; then by Lemma 2.1 there is a ξ : H → B such that ξµ = α. From

βξµ = βα = 0 and (Fuchs 1970) (2.2) we infer the existence of an η : G → C

such that ην = βξ, and so (1A, ξ, η) maps E upon E1, i.e., E1 = Eη. Next we show

exactness at ExtR(G,B). By β∗α∗ = (βα)∗ = 0∗ = 0, it suffices to show that kernel

is contained in image. Assume E2 : 0 // B
µ // H ν // G // 0 ∈ ExtR(G,B)

satisfies βE2 = 0; then by Lemma 2.1 there is a ξ : H → C with ξµ = β. Now

ξµα = 0 implies the existence of a map λ : A → Ker ξ with ρλ = µα, where
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ρ : Ker ξ→ H is the injection. Therefore the diagram

0

²²

0

²²

0

²²
0 // A λ //

α

²²

Ker ξ
νρ //

ρ

²²

G // 0

E2 : 0 // B
µ //

β
²²

H ν //

ξ
²²

G //

²²

0

0 // C

²²

C //

²²

0

0 0

is commutative, has exact columns and the two bottom rows are exact. By the

3 × 3-lemma, the top row is exact, thus it is an element of ExtR(G,A) which is

mapped by α upon E2. Finally, the epimorphic character of β∗ follows again from

(Fuchs 1970) (24.6). �

The exact sequences (2) and (3) are of cardinal importance in dealing with

Hom and ExtR. They are extensively made use of in the description of ExtR, in

particular, in the theory of cotorsion modules. They establish a close connection

between Hom and ExtR [exploited to a great extent in homological algebra].

It is worhthwhile pointing out this connection more closely, since yields a

method of discussing ExtR. Given A, C, let E0 : 0 // H
φ // F

ψ // C // 0 be

a free resolution of C, i.e., both F and H are free. For an η : H → A we can find a

B and a χ : F→ B such that the diagram

E0 : 0 // H
φ //

η

²²

F
ψ //

χ

²²

C // 0

ηE0 : 0 // A
µ // B ν // C // 0

commutes and the bottom row is exact. Now

E∗0 : Hom(H,A) // ExtR(C,A)

is easily seen to be an epimorphism whose kernel consists of all η : H → A that

can be extended to an F→ A. Notice that if

F =
⊕

i∈I < xi > and H =
⊕

j∈J < y j > with y j =
∑

i m jixi
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(m ji ∈ Z, almost all m ji with fixed j vanish), then the extension ηE0 of A by C is the

module

B =< A, xi (i ∈ I) :
∑

i m jixi = ηy j ( j ∈ J) >.

Two homomorphisms η1, η2 : H → A give rise to equivalent extensions exactly if

their difference is extendable to a homomorphism F→ A.

2.3. Elementary Properties of ExtR

Our objective in this section is to record a number of elementary but most

useful properties of extensions. We shall make frequent use of the exact sequences

stated in Theorem 2.2.

In order not to interrupt our discussion, first we formulate a simple lemma.

In accordance with definitions in Section 2.1 if E : 0 // A
µ // B ν // C // 0

is an extension of A by C, and if α : A → A, γ : C → C are endomorphisms of

A and C, respectively, then αE an Eγ will again be extensions of A by C. The

correspondences

α∗ : E 7→ αE and γ∗ : E 7→ Eγ

are evidently endomorphisms of ExtR(C,A); we call them induced endomorphisms

of ExtR. The formulas (α1 + α2)∗ = (α1)∗ + (α2)∗ and (γ1 + γ2)∗ = (γ1)∗ + (γ2)∗ show

that the endomorphism ring of A acts on ExtR(C,A) and similarly the dual of the

endomorphism ring C operates on ExtR(C,A). These commute as is shown by

α∗γ∗ = γ∗α∗; hence ExtR(C,A) is a (unital) bimodule over endomorphism rings of

A and C, acting from the left and right, respectively. Now our lemma asserts the

following remarkable fact.

Lemma 2.3 Multiplication by an element n ∈ R on A or C induces multiplication by n

on ExtR(C,A).

We begin with two rather trivial observations.

(A) A module C satisfies ExtR(C,A) = 0 for every A if and only if C is free.

(B) A module A satisfies ExtR(C,A) = 0 for every C exactly if A is divisible.

(C) Let us turn next to the following theorem.
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Theorem 2.3 There exist natural isomorphisms

(1) ExtR(
⊕

i∈I Ci,A) �
∏

i∈I ExtR(Ci,A),

(2) ExtR(C,
∏

j∈J A j) �
∏

j∈J ExtR(C,A j).

(D) For every module A and for every m ∈ R,

ExtR(R/Rm,A) � A/mA.

(E) If mA = 0 or mC = 0 for some m ∈ R, then m ExtR(C,A) = 0.

(F) For m ∈ R,

ExtR(C,R/Rm) � ExtR(C[m],R/Rm).

(G) If mA = A for some m ∈ R, then m ExtR(C,A) = ExtR(C,A)

(H) An automorphism α of A induces an automorphism α∗ of ExtR(C,A).

Furthermore, if A is torsion-free divisible, then ExtR(C,A), too, is torsion-free divisible.

(I) C[m] = 0 implies m ExtR(C,A) = ExtR(C,A). In particular, ExtR(C,A) is divisible if

C is torsion-free.

(J) Let γ be an automorphism of C. Then γ∗ is an automorphism of ExtR(C,A). Thus if

mC = C and C[m] = 0, then m ExtR(C,A) = ExtR(C,A) and ExtR(C,A)[m] = 0; and if

C is torsion-free divisible, then the same holds for ExtR(C,A).

(K) If A is p-divisible and C is p-module, then ExtR(C,A) = 0.

(L) The following theorem provides us with an essential isomorphism.

Theorem 2.4 If A is torsion-free and C is torsion, then

ExtR(C,A) � Hom(C,D/A)

where D is divisible hull of A. Hence ExtR(C,A) is a reduced algebraically compact module.

The choice A = R leads us the following interesting isomorphism.

Corollary 2.1 If C is a torsion module, then

ExtR(C,R) � Char C

(M) If A is a torsion-free module whose p-basic submodule is of rank m, then

ExtR(R(p∞),A) � p-adic completion of
⊕

m Jp.

(N) If A is torsion-free, ExtR(C,A) is algebraically compact, whatever C is.

(O) If A is algebraically compact, then ExtR(C,A) is a reduced algebraically compact

module.
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2.4. Cotorsion Modules

A module is called cotorsion if ExtR(J,G) = 0 for every torsion-free module

J.

In other words, G is cotorsion if every extension of G by a torsion-free module

splits. Since this means that a cotorsion module is a direct summand in every

module in which it is contained with torsion-free quotient module, it is evident

that algebraically compact modules are cotorsion. We shall see that the converse

is not true.

It is convenient to list here following more or less elementary results on

cotorsion modules.

(A) An epimorphic image of a cotorsion module is cotorsion.

(B) Let G be reduced and cotorsion. For a submodule H of G to be cotorsion it is necessary

and sufficient that G/H is reduced.

(C) If G is reduced and cotorsion, then for every endomorphism θ of G, both Kerθ and

Imθ are cotorsion.

(D) If H is a submodule of G such that both H and G/H are cotorsion, then G is cotorsion.

(E) A direct product
∏

i∈I Gi is cotorsion if and only if every summand of Gi is cotorsion.

(F) The inverse limit of a reduced cotorsion module is a reduced cotorsion module.

(G) If G is cotorsion, then Hom(A,G) is cotorsion for any A.

(H) For a reduced cotorsion module G, there is a natural isomorphism

ExtR(K/R,G) � G.

(I) A reduced cotorsion module G may be written uniquely in the form

G =
∏

p Gp

where, for each prime element p of R, Gp is a reduced cotorsion module which is a p-adic

module.

By (H), we may write

G � ExtR(K/R,G) = ExtR(
⊕

p R(p∞),G) =
∏

p ExtR(R(p∞),G).

Proposition 2.2 A module is cotorsion if and only if it is an epimorphic image of an

algebraically compact module.
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Proposition 2.3 A reduced cotorsion module is algebraically compact if and only if its

Ulm submodule vanishes.

Theorem 2.5 The Ulm submodules of cotorsion modules are again cotorsion, and the

Ulm factors of cotorsion modules are algebraically compact.

Corollary 2.2 A torsion module is cotorsion if and only if it is a direct sum of a divisible

module and a bounded module.

Corollary 2.3 A necessary and sufficient condition for a torsion-free module to be cotor-

sion is algebraically compactness.

Theorem 2.6 ExtR(C,A) is cotorsion for all A, C.
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CHAPTER 3

THE κ-ELEMENTS OF ExtR(C,A) AS TORSION

ELEMENTS

Definition 3.1 A short exact sequence E is called κ-exact if Imα has a supplement

in B i.e. a minimal element in the set {V ⊂ B|V + Imα = B}. In this case we say

that [E] ∈ ExtR(C,A) is a κ-element and the set of all κ-elements will be denoted by

ExtR(C,A)κ.

In the following we will permanently use the following result from

(Zöschinger 1974b), which can be easily proved:

If h : H → C is a small cover of C, and at least one primary component of C is

zero, then Ker h is torsion; even if almost all primary components in C are equal

to zero, then Ker h is bounded. Thus one obtains:

Theorem 3.1 Let C be a divisible module and almost all primary components of C be

zero, then the κ-elements of ExtR(C,A) are exactly the torsion elements.

Proof Let E = 0 // A α // B // C // 0 represent a torsion element in

ExtR(C,A). It follows from (Fuchs 1970) (53.1) that there exists a nonzero ele-

ment n ∈ R such that Imα/(Imα)[n] is a direct summand in (Imα + nB)/(Imα)[n]

where G[n] = {x ∈ G | nx = 0} as usual. Since C is divisible, Im α/(Im α)[n] ⊂⊕

B/(Im α)[n], indicates V + Im α = B with V ∩ Imα is bounded. By (Zöschinger

1974b), a bounded module has a supplement in every extension, therefore

V ∩ Im α ⊂κ V, hence Im α ⊂κ B. Conversely, if an arbitrary sequence E is κ-

exact, that is there is a supplement V of Im α in B, then by the remark above,

V ∩ Im α is bounded. Then there exist an element n ∈ R such that n(V ∩ Imα) = 0

so (V∩ Imα) ⊂ (Imα)[n], therefore B = Imα+V and (V∩ Imα) ⊂ (Imα)[n] implies

Imα/(Imα)[n] ⊂⊕ B/(Imα)[n] for some n ∈ R. Again by (Fuchs 1970) (53.1), [E] is

a torsion element of ExtR(C,A) �
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Corollary 3.1 If ExtR(R(p∞),M) is torsion, then M has a supplement in each extension

N of M, with N/M p-primary.

Proof Since as is well-known ExtR(R(p∞),M) is reduced and cotorsion, by Theo-

rem 2.6 it follows from the condition that it is also bounded, since every divisible

p-module C is isomorphic to
⊕

R(p∞) then ExtR(C,M) � ExtR(
⊕

R(p∞),M) �
∏

(R(p∞),M) is bounded, thus ExtR(C,M) is torsion for every divisible p-module

C. Now if N is as given, then there is a module H such that N ⊂ H with H/M is

divisible and N/M is big in H/M. By the Theorem, M has a supplement in H, thus

as a result of (Zöschinger 1974b) (Hilfssatz 5.1) also does in N. �

Corollary 3.2 There is a p-module N with a pure submodule M such that M has a

supplement in each K such that M ⊂ K $ N but is not a direct summand in N.

Proof We have the short exact sequence

0 // R // K // K/R // 0 , so we get

0 // Hom(K/R,M) // Hom(K,M) // Hom(Z,M) // ExtR(K/R,M)

// ExtR(K,M) // ExtR(Z,M) // 0 .

Since Hom(K,M) � D(M) and Hom(Z,M) � M we get

0 // D(M)
f // M

g // ExtR(K/R,M) h // ExtR(K,M) // · · · , and also

Ker h = Im g � M/Ker g = M/ Im f = M/D(M).

So we always have the exact sequence

0 // M/D(M) // ExtR(K/R,M) // ExtR(K,M) // 0 , then

0 // (M/D(M))1 // (ExtR(K/R,M))1 // 0 . Therefore, for an arbitrary

module M we have a monomorphism M1/D(M) −→ PextR(K/R,M) where

M1 =
⋂

n∈R nM is as usual with nonzero n. If, one chooses a special p-primary

M with D(M) $ M1, by (Fuchs 1970) (p.150) then PextR(R(p∞),M) can not be

torsion-free, and for a nonzero torsion element [0 −→ M ⊂ N −→ R(p∞) −→ 0]

we have M ⊂κ N by the theorem; moreover for each M $ X $ N, there is a cyclic

X1 ⊂ X with X1 + M = X, and E is splitting by (Fuchs 1970) (28.2) thus X = M⊕X1

obviously X1 is a supplement of M in X. �

We still want more details about the short exact sequence

0 // A α // B // C // 0

occurring in the proof of the theorem in which V + Imα = B for some V where
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V ∩ Imα is bounded. We call it β-exact, and denote Imα ⊂β B. Any β-element of

ExtR(C,A) is always a κ-element as well as a torsion element. The converse holds

in the following special case:

Lemma 3.1 If C and A are torsion, then

ExtR(C,A)β = ExtR(C,A)κ ∩ T(ExtR(C,A)).

Proof With the characterization of the torsion elements of Ext in (Walker 1964)

the claim says: If M is a torsion module and U ⊂κ M with U/U[n] ⊂⊕ (U+nM)/U[n]

for some 0 , n ∈ R, then U ⊂β M. If we choose a direct supplement V/U[n] of

U/U[n], then for all prime elements p of R, with (p,n) = 1, we have Tp(M) =

Tp(nM) = Tp(U + nM) = Tp(V) + Tp(U). On the other hand, since U∩V ⊂ U[n] and

(p,n) = 1 we have Tp(V) ∩ Tp(U) = 0, i.e. Tp(U) ⊂⊕ Tp(M). Since U ⊂κ M we can

also find a supplement W of U in M with Tp(W)∩Tp(U) = 0 for all prime elements

p of R with (p,n) = 1 since Tp(W) = Tp(W) ∩ Tp(M) = Tp(U) ⊕ K = Tp(M). For the

rest of the proof, Tp(W) ∩ Tp(U) is coatomic after all (i.e. all factors are reduced),

thus whole W ∩U is bounded. �

Remark 3.1 In ExtR(Soc(K/R), Jp) each element is a κ-element as well as a torsion

element, but only the zero element is a β-element.

Lemma 3.2 If

0 // X ι // Y π // C // 0

is a torsion-free resolution of C and δ : Hom(X,A)→ ExtR(C,A) is the relevant connect-

ing homomorphism, then

ExtR(C,A)β = δ(T(Hom(X,A))).

Proof If f ∈ Hom(X,A), then we obtain δ( f ) = [E] with

0 // X //

f
²²

Y //

f ′

²²

C // 0

E = 0 // A α
// B // C // 0

and in the diagram, Im f ′ + Im α = B as well as Im f ′ ∩ Imα � Im f . So, f is

a torsion element of Hom(X,A), i.e. Im f is bounded, then [E] is a β-element of
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ExtR(C,A).

Conversely, let now E = 0 // A α // B
β // C // 0 be β-exact. By (Fuchs

1970) we know if A is torsion-free and B is bounded, then ExtR(A,B) = 0. So

V + Imα = B with V∩ Imα = V∩Ker β = K is bounded. We get the exact sequence

0 // K // V
β|V // C // 0 . Since β |V is surjective and Y is torsion-free we

obtain an exact sequence

0 // Hom(Y,K) // Hom(Y,V)
(β|V)∗ // Hom(Y,C) // ExtR(Y,K) = 0 , and for

π ∈ Hom(Y,C) there exist g ∈ Hom(Y,B) with Im g ⊂ V and βg = π. By the

diagram,

0 // X ι //

f
²²

Y π //

g
²²

C // 0

E = 0 // A α
// B

β
// C // 0

δ( f ) = [E] as well as Im f � Im g ∩ Imα is bounded thus f ∈ T(Hom(X,A)). �

Corollary 3.3 (a) The β-elements of ExtR(C,A) form a submodule.

(b) If f : A → A ′ is a homomorphism, then f∗ : ExtR(C,A) → ExtR(C,A ′) preserves

β-elements.

(c) If g : C ′ → C is a homomorphism, then g∗ : ExtR(C,A) → ExtR(C ′,A) preserves

β-elements.

Proof

(a) Clear, since image preserves the β-elements.

(b) For the β-exact sequence E we have the diagram

0 // X //

g
²²

Y //

i
²²

C // 0

E : 0 // A //

f
²²

B //

h
²²

C // 0

E ′ : 0 // A ′ // B ′ // C // 0

g ∈ T(Hom(X,A)) then f g ∈ T(Hom(X,A ′)) hence E ′ is β-exact.

(c) Similar proof with (b).

�
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Remark 3.2 If C is divisible, then one can also choose a divisible Y in the torsion-free

resolution. Then Coker δ is torsion-free and Ker δ is divisible so that δ is surjective on

the torsion elements, i.e. T(ExtR(C,A)) = ExtR(C,A)β.

Proof We know if Y is torsion-free divisible, then ExtR(Y,A) is torsion-

free and Hom(Y,A) is divisible for all A. For the exact sequence

0 // Hom(C,A) // Hom(Y,A)
g // Hom(X,A) δ // ExtR(C,A)

f // ExtR(Y,A)

// ExtR(X,A) // 0. Then Coker δ = ExtR(C,A)/ Im δ = ExtR(C,A)/Ker f =

Im f ⊂ ExtR(Y,A) which is torsion-free, and Ker δ = Im g = Hom(Y,A)/Ker g is

divisible. �

Remark 3.3 From a result of (Baer 1958) (Proposition 3.2) one can immediately deduce

that if T(ExtR(C,R(I))) = 0 for each I, then C/D(C) is free. Therefore T(ExtR(C,A)) =

ExtR(C,A)β for all A if and only if C/D(C) is free.

Proof We know that if ExtR(A,X) = 0 for all X, then A is free. Moreover if

ExtR(C,A) = 0 for all torsion X, then A is free by [15]. Hence if ExtR(A,R) = 0, then

A is free. �

Definition 3.2 ExtR(C,A) is called κ-full if every element of ExtR(C,A) is κ-element.

Example 3.1 If almost all primary components of C are zero, then the β-elements of

ExtR(C,A) coincide with the κ-elements. If particularly, C = R/(m) where m , 0, 1, then

we have the projective resolution 0 // R m // R // R/(m) // 0 , and the connect-

ing homomorphism δ yields ExtR(R/(m),A) � A/mA where the κ-elements correspond

exactly the submodule (T(A) + mA)/mA. In particular,

ExtR(R/(m),A) is κ-full⇔ A/T(A) is m-divisible.

Proof From the exact sequence

0 // Hom(R/(m),A) // Hom(R,A) m.n // Hom(R,A) // ExtR(R/(m),A)

// ExtR(R,A) = 0, since Hom(Z,A) = A and ExtR(R,A) � A/Ker δ =

A/mA, we get 0 // Hom(R/(m),A) // A m // A δ // A/mA // 0. Then

ExtκR(R/mA) = T(ExtR(R,A)) � T(A/mA) = (T(A) + mA)/mA.

For the κ-full part, we have ExtR(C,A) = ExtκR(R,A). Then (T(A) + mA)/mA =

A/mA⇔ T(A) + mA = A⇔ m(A/T(A)) = A/T(A). �

21



Theorem 3.2 For any pair (A,C) the following are equivalent:

(i) ExtR(C,A)β ⊂ Rad(ExtR(C,A)).

(ii) ExtR(C,A)β = 0.

(iii) Rad(ExtR(C,A)) is divisible.

Proof (i⇒ iii) Since divisibility of Rad(ExtR(C,A)) is equivalent to the statement

that if Tp(C) , 0, then T(A) is p-divisible, we must show that if Tp(C) , 0 then T(A)

is p-divisible.

Case I. If Tp(C) is reduced, then there is a cyclic direct summand X in

Tp(C) where X � R/(Rpn) for nonzero n. We have homomorphisms α :

R/(Rpn) → C and p : C → R/(Rpn) with αp = 1. Then we get the maps

α∗ and p∗ between ExtR(R/(Rpn),A) and ExtR(C,A) where α∗p∗ = 1, so we

can write ExtR(R/(Rpn),A)β = α∗p∗(ExtR(R/(Rpn),A))β ⊂ α∗(ExtR(R/(Rpn),A))β ⊂
α∗(Rad(ExtR(R/(Rpn),A))) ⊂ Rad(ExtR(R/(Rpn),A)) = p(ExtR(R/(Rpn),A)). (1.4) in-

dicates that (T(A) + p nA)/p nA ⊂ p(A/pnA = pA/p nA, thus T(A) is p-divisible.

Case II. If Tp(C) is not reduced, then

ExtR(R(p∞),A)β = α∗p∗(ExtR(R(p∞),A))β ⊂ Rad(ExtR(R(p∞),A)), by similar proof as

in Case I, the torsion submodule of ExtR(R(p∞),A) is divisible, so it is zero. Since

A can not have a direct summand of the form R/(p n) for nonzero n the statement

follows.

(iii ⇒ ii) Case I. Tp(C) , 0 for all prime elements p of R. Then T(A) is divisible,

so A/D(A) is torsion-free. By (Fuchs 1970) Hom(C,A/D(A)) is torsion-free again

i.e. T(Hom(C,A/D(A))) = 0. Since ExtR(C,A/D(A))β = δ(T(Hom(C,A/D(A)))) by

Lemma 1.3. ExtR(C,A/D(A))β = 0. The statement follows by the isomorphism

v∗ : ExtR(C,A)→ ExtR(C,A/D(A)).

. 0 // D(A) // A // A/D(A) // 0 is splitting i.e. A = D(A) ⊕ A/D(A).

Then we get ExtR(C,A) � ExtR(C,D(A)) ⊕ ExtR(C,A/D(A)) = ExtR(C,A/D(A)) /

Case II. At least one of the primary components of C is zero. We claim that

ExtR(C,A) has no nonzero κ-element. Furthermore if we use the result from

Lemma 4.1 that v∗ preserves κ-elements, we can assume that A is reduced, and

now our assumption states: Tp(C) , 0 =⇒ T(A) is p-divisible so Tp(A) is p-divisible

but since A is reduced, Tp(A) = 0. Now let 0 // A α // B // C // 0 be κ-
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exact, and V be a supplement of Imα in B. By (Zöschinger 1974a) (Hilfssatz 5.2),

V ∩ Imα is torsion and the injective hull of V is isomorphic to the injective hull

of C. For some prime element p ∈ R that Tp(C) = 0, we have Tp(V) = 0. For some

prime element p ∈ R such that Tp , 0, since A � Imα we get Tp(Imα) = 0. Then

we get for all prime elements p of R, Tp(V ∩ Imα) = 0, thus V ⊕ Imα = B i.e.

ExtR(C,A) = 0. �

Remark 3.4 Of course ExtR(C,A)β ∩ Rad(ExtR(C,A)) does not need to be zero, as it is

shown in the example (second corollary to Theorem 3.1).

Proof By second corollary, for C = R(p∞) and for some p-primary module M,

there exists a pure exact sequence 0 , E: M // N // R(p∞) // 0 which

is a κ-element. By Theorem 3.1 ExtR(R(p∞),M)κ = T(ExtR(R(p∞),M)) and by

Lemma 3.1 ExtR(R(p∞),M)β = ExtR(R(p∞),M)κ. Then E ∈ Rad(ExtR(R(p∞),M)) ∩
ExtR(R(p∞),M)β. �

Remark 3.5 It follows by the proof that if A/T(A) is divisible and ExtR(C,A)β = 0, then

there is no nonzero κ-element in ExtR(C,A).

Finally, with the help of β-concept we will give a necessary criterion that T(B)

splits off in B.

Lemma 3.3 Suppose that every torsion submodule and every torsion factor module of A

is bounded. Then for A ⊂ B the following are equivalent:

(i) T(B) ⊂⊕ B.

(ii) (T(B) + A)/A ⊂β B/A.

Proof (i⇒ ii) From the equality V⊕T(B) = B we have (V +A)/A+ (T(B)+A)/A =

B/A, and we claim that the intersection is bounded. [(V + A) ∩ (T(B) + A)/A =

[A + (V + A) ∩ T(B)]/A = (A + T(V + A))/A � (T(V + A))/(A ∩ T(V + A)) �

(T(V + A))/T(A). On the other hand, V + A = (V + A)∩ B = (V + A)∩ (V + T(B)) =

(V+A)∩T(B)+V = T(V+A)⊕V. So intersection is isomorphic to (V+A)/(V+T(A)) �

A/[(V + A)∩ (V + T(A))] � A/[(V + T(A))∩A] = A/[T(A) + V∩A] = A/(T(A)∩V),

so is a torsion factor of A as desired.

(ii⇒ i) By the equality X/A+(T(B)+A)/A = B/A with bounded [X∩(T(B)+A)]/A =

23



(A + T(X))/A � T(X)/T(A). Since T(A) is bounded by assumption, T(X) is also

bounded. By the property (b) (Fuchs 1970) (p.114) T(X) is a pure submodule of X.

Then by Theorem 27.5 (Fuchs 1970), T(X) ⊂⊕ X i.e. X = V ⊕T(X) for some V ⊂ X.

Then B = X + T(B) + A = X + T(B) and V ∩ T(B) = V ∩ (X ∩ T(B)) = V ∩ T(X) = 0.

Thus V ⊕ T(B) = B. �

As one can easily see, the stated condition on A is equivalent to the

condition that A is of the form A = A1 ⊕ A2 where A1 is finitely generated and

free, and A2 is bounded. Since from T(C) ⊂κ C, we always have T(C) ⊂⊕ C we

obtain in two special cases A1 = 0 and A2 = 0 respectively:

Corollary 3.4 (Corollary 1 (Papp 1975)) If 0 −→ A −→ B −→ C −→ 0 is an exact

sequence and A is bounded, then T(B) ⊂⊕ B is equivalent to the statement that T(C) ⊂⊕ C.

Corollary 3.5 (Corollary 2 (Stratton 1975)) If the sequence 0 −→ A −→ B −→
C −→ 0 is pure-exact and A is finitely generated and free, then T(B) ⊂⊕ B is equivalent

to the statement that T(C) ⊂⊕ C.
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CHAPTER 4

NEAT- AND CONEAT- HOMOMORPHISMS

The main problem with the investigation of the κ-elements in ExtR(C,A) is

that they need not to form a submodule. The reason for it is the fact that, in general,

for a homomorphism g : C ′ → C the induced map g∗ : ExtR(C,A) → ExtR(C ′,A)

need not to preserve κ-elements. For particular homomorphisms which we call

coneat, this can not happen, and they are studied in this chapter.

Lemma 4.1 (I) If f : A→ A′, then f∗ : ExtR(C,A)→ ExtR(C,A′) preserves κ-elements.

(II) Let g : C ′ → C and C ′ be torsion. If either a primary component of C is zero or A is

torsion, then g∗ : ExtR(C,A)→ ExtR(C ′,A) preserves κ-elements.

Proof (I) Let the following diagram be commutative with exact lines:

(I)

0 // A α //

f
²²

B //

f ′

²²

C // 0

0 // A′
α ′

// B′ // C // 0.

If V is a supplement of Imα in B, then f ′(V) is a supplement of Imα ′ in

B ′. Clearly, f ′(V) + Imα ′ = B ′.

. Let h : B→ C and h ′ : B ′ → C ′ be homomorphisms with h ′(b ′) = h(b) for some

b ∈ B and b ′ ∈ B ′, then h ′(b ′) = h ′( f ′(b)). Thus b ′ − f ′(b) ∈ Ker h ′ = Imα ′, then

b ′ = f ′(b) + α ′(a ′) for some a ′ ∈ A ′./

Then it is only to be shown that f ′(V) ∩ Imα′ = f ′(V ∩ Imα) which is small

in f ′(V). Let f ′(v) = α ′(a ′) for some v ∈ V and a ′ ∈ A ′. Then we have 0 =

h ′(α ′(a ′)) = h ′( f ′(v)) = h(v) thus v ∈ Ker h = Imα hence f ′(v) ∈ f ′(V ∩ Imα).

(II) Let the following diagram be commutative with exact lines:

(II)

0 // A // B ′
β ′ //

g ′

²²

C ′ //

g
²²

0

0 // A // B
β

// C // 0.
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If V is a supplement of Ker β in B, then g ′−1(V)+Ker β′ = B ′, and since g ′(g ′−1(V)∩
Ker β ′) = V ∩ Ker β we can say g ′ |Ker β= 1A, so g ′ is monic. Since D ′ = g ′(V) ∩
Ker β ′ and D = V ∩ Ker β are isomorphic to each other, D and D′ are torsion and

coatomic. Since each primary component of D′ is bounded, it has a supplement

in g ′−1(V) which is torsion hence Ker β′ ⊂κ B ′. �

Corollary 4.1 Every multiple of a κ-element of ExtR(C,A) is again a κ-element.

Proof For each r ∈ R and [E] ∈ ExtR(C,A), as it is well-known, r[E] = f∗([E])

where f is the multiplication of A with r. �

Corollary 4.2 If C has a torsion-free cover and A is a cotorsion module, then ExtR(C,A)

is κ-full.

Proof By any torsion-free cover of C we mean a small epimorphism h : H → C

with torsion-free H (see all modules that have a torsion-free cover below).

Thus induced connecting homomorphism δ : Hom(Ker h,A) → ExtR(C,A)

has the following property: Im δ consists only of κ-elements since each ϕ ∈
Hom(Ker h,A) originates δ(ϕ) through pushout determined by a κ-exact se-

quence. · · · // Hom(Ker h,A) δ // ExtR(C,A) // ExtR(H,A) = 0 since H is

torsion-free and A is cotorsion. Then we get δ is an epimorphism so we have

ExtR(C,A) = Im δ = ExtκR(C,A). �

Corollary 4.3 If C is torsion, and either a primary component of C is zero or A is torsion,

then the κ-elements of ExtR(C,A) form a submodule.

Proof Since the map ∆∗ : ExtR(C × C,A)→ ExtR(C,A) preserves κ-elements, for

κ-elements [E1] and [E2] in ExtR(C,A) we have [E1] + [E2] = ∆∗([∇(E1 ×E2)]) which

is also a κ-element. �

In connection with the problem of when g∗ preserves κ-elements we first

give three examples:

(1) The splitting monomorphism ι : R(p∞) → K/R induces an isomorphism

ι∗ : ExtR(K/R, Jp) → ExtR(R(p∞), Jp) and the first module is κ-full by the second

corollary while the second has no nonzero κ-element.

(2) If A is a torsion module, for the canonical epimorphism ν : K → K/R, then

ν∗ : ExtR(K/R,A)→ ExtR(K,A) preserves the κ-elements if and only if A is divisible
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by almost all prime elements p of R.

(3) If C is a torsion module with Tp(C) , 0 for all prime elements p of R, then, as

it will be shown in chapter 7 that the κ-elements of ExtR(C,R) do not form a sub-

module. Thus, ∆∗ : ExtR(C × C,R)→ ExtR(C,R) can not preserve the κ-elements.

It seems difficult to give necessary conditions for the fact that g∗ :

ExtR(C,A) → ExtR(C ′,A) preserves κ-elements (see Theorem 7.2). But it is easy

to see that the equality g(Soc(C ′)) = Soc(C) is sufficient. Now we want to study

on such homomorphisms, and give a relation (in the dual case) with the neat-

homomorphisms introduced by Enochs (Enochs 1971). f : A → A′ is called

neat if for every decomposition f = βα where α is essential monomorphism, α

is an isomorphism (This is not the original definition, but one of the equivalent

condition given by Bowe in (Bowe 1972), (Theorem 1.2)). The dualization is:

Definition 4.1 A homomorphism g : C ′ → C is called coneat, if β is an isomorphism

for every decomposition g = βα where β is small epimorphism.

For the characterization of the coneat homomorphisms, first we need the

following:

Lemma 4.2 (a) An epimorphism g : C ′ → C is coneat if and only if Ker g is coclosed

in C ′.

(b) A splitting monomorphism g : C ′ → C is coneat if and only if Coker g has no

small cover.

(c) If g = g2g1 is coneat, then g2 is also coneat. In addition, if g2 is injective, then g1

is coneat, too.

Proof A submodule U of M is called coclosed if U/X is not small in M/X for every

proper submodule X of U. By (Zöschinger 1974a) (Lemma 3.3) it is equivalent to

the fact that pU = U ∩ pM for all prime element p of R, i.e. U is a neat submodule

of M in the sense of (Fuchs and Salce 2001).

(a) If g is surjective and coneat, and X $ Ker g such that Ker g/X is small in

C ′/X, then g = C ′ ν // C ′/X
g̃ // C and g̃ is small epimorphism, thus g̃ is

an isomorphism by assumption, i.e. X = Ker g. Conversely, from g = βα
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where β is a small epimorphism, g and α are factorized over C ′/Kerα, say

g1 and α1.

C ′
g //

α((QQQQQQQQQQQQQQQQ

γ
²²Â
Â
Â C

C ′/Kerα
g1

66mmmmmmm

α1
//______ A

β

OO

Now since g is surjective, α is also surjective thus α1 is bijective, thus Ker g1 =

Ker g/Kerα is small in C ′/Kerα. By assumption g1 is an isomorphism, thus

β is also an isomorphism.

(b) If the splitting monomorphism g : C ′ → C is coneat and h : H→ Coker g is a

small cover, then the map ω =< g, s >: C ′ ×Coker g→ C is an isomorphism

where s is a right inverse of the canonical map C → Coker g. Since the

following diagram is commutative

C ′
(1,0)

ssgggggggggggggggggggggggggg

g
²²

C ′ ×H 1×h
// C ′ × Coker g ω

// C

we have that the lower row is an isomorphism by assumption, so h is also

an isomorphism. Conversely, it follows from g = βα where β is small a

epimorphism that the induced map Cokerα → Coker β is a small epimor-

phism, thus by assumption it is an isomorphism, i.e. Ker β ⊂ Imα; since g is

injective Ker β = 0.

(c) Only the statement about g1 to be proved: If g1 = β1α1 where β1 is small

epimorphism, then, since R is hereditary and g2 is injective, we have the

following commutative diagram with exact rows:

0 // . // .

²²

β1 // . //

g2

²²

0

0 // . // .
β

// C // 0.

Then it is clear that, β is also a small epimorphism, thus, since g is an

isomorphism, β1 is bijective, too.

�
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Theorem 4.1 For a homomorphism g : C ′ → C the following are equivalent:

(i) g is coneat.

(ii) Ker g is coclosed in C ′, and Im g ⊃ Soc(C).

(iii) g(C ′[p]) = C[p] for all prime elements p of R.

(iv) If the diagram below is a pullback diagram and β is a small epimorphism, then β ′ is

also a small epimorphism.

B ′

g ′

²²

β ′ // C ′

g
²²

B
β

// C

Proof (i ⇒ ii) The restriction of g on Im g is again coneat by the lemma, thus

Ker g is coclosed in C ′. Naturally, the inclusion Im g ⊂ C is also coneat, and for

a intermediate module X with Im g ⊂⊕ X, X is essential in C gives by (b) that

X/ Im g has no small cover, thus it is torsion-free, hence Soc(C) = Soc(X) ⊂ Im g.

(ii⇒ iii) From c ∈ C[p] we have c = g(z) for some z ∈ C ′, pz ∈ Ker g∩ pC ′, pz = pz1

for some z1 ∈ Ker g, g(z − z1) = c with z − z1 ∈ C ′[p].

(iii⇒ iv) Let a pullback diagram be given as in theorem and β be a small epimor-

phism. Since β ′ is surjective and Ker β ′ is coatomic, it is only to be shown that

Ker β ′ ⊂ pB ′ for all prime elements p of R: From y ∈ Ker β ′ we have g ′(y) ∈ Ker β,

g ′(y) = pb for some b ∈ B, β(b) ∈ C[p], β(b) = g(z) for some z ∈ C ′[p], z = β ′(y1)

and b = g ′(y1) for some y1 ∈ B ′, y − py1 ∈ Ker g ′ ∩ Ker β ′ = 0, y = py1.

(iv⇒ i) Clear �

Corollary 4.4 If g : C ′ → C is coneat, then g∗ : ExtR(C,A) → ExtR(C ′,A) preserves

κ-elements.

Proof Consider the diagram (II) in Lemma 4.1 where V is again a supplement

of Ker β in B. Then V ′ = g ′−1(V) is a supplement of Ker β ′ in B′, then it is only to

be shown that V ′ ∩ Ker β ′ is small in V ′, and since g is coneat this follows from

the pullback diagram

V ′

²²

β ′|V ′ // C ′

g
²²

V
β|V

// C.

�
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Corollary 4.5 g∗ : ExtR(C,A) → ExtR(C ′,A) preserves κ-elements if g satisfies the

following two conditions:

(a) Im g ⊃ Soc(C).

(b) Ker g is supplemented and has a supplement in every extension.

Proof Since the inclusion Im g ⊂ C is coneat, so has the desired property, one

can assume g is surjective, thus the corresponding pullback diagram is in the

particular form

B ′

²²

// B ′/Y
g

²²
B ′/X

β
// B ′/(X + Y) ,

besides, there is a supplement V/X of (X+Y)/X in B ′/X. By the second assumption

on Ker g � X, we now have X ⊂κ V, thus X + Y ⊂κ B ′ and from the fact X is

supplemented (Zöschinger 1974a) (Lemma 1.3), finally we have Y ⊂ B ′. �

Corollary 4.6 A module M has a torsion-free cover if and only if there is n ≥ 0 with

dim(M[p]) = n for all prime elements p of R.

Proof Step 1. M has a torsion-free cover if and only if Soc(M) has a torsion-free

cover. Namely, if h : H → M is a torsion-free cover, then, since the inclusion

Soc(M) ⊂ M is coneat, h−1(Soc(M)) → Soc(M) is also a torsion-free cover. Con-

versely, if one has a torsion-free cover h : H→ Soc(M), then, since R is hereditary

and h is surjective, there is a commutative diagram with exact rows

0 // H //

h
²²

H1

h1

²²

// . // 0

0 // Soc(M) ⊂ M // . // 0,

and it is clear that h1 is again a small epimorphism, and H1 is torsion-free.

Step 2. If all p-Socles of M have the same dimension n, then one can define

R ⊂ S ⊂ K by S/R = Soc(K/R), and then S n // Soc(K/R)n � // Soc(M) is a

torsion-free cover. Conversely, if M has a torsion-free cover, then the injective

hull of T(M) also has a torsion-free cover i.e. we can assume M is divisible and

torsion. For a torsion-free cover h : H → M, Ker h is coatomic and essential in

H, thus Rank(H) = Rank(Ker h) is finite, therefore H � Kn for some n ≥ 0. If one

chooses F ⊂ Ker h where F � Rn, then Ker h/F is torsion and direct sum of cyclics,

thus M � H/Ker h � (H/F)/(Ker h/F) � H/F � (K/R)n. �
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We only want to formulate, but not to give the proofs of the corresponding

characterization of neat homomorphisms which is simplified by the existence of

an injective hull.

Theorem 4.2 For a homomorphism f : A→ A ′ the following are equivalent:

(i) f is neat.

(ii) Im f is closed in A ′, and Ker f ⊂ Rad(A).

(iii) f −1(pA ′) = pA for all prime elements p of R.

(iv) If the following diagram is a pushout diagram and α is a small monomorphism,

then α′ is also a small monomorphism.

A α //

f
²²

B
f ′

²²
A ′

α ′
// B ′

Corollary 4.7 f : A → A ′ is neat and coneat if and only if Ker f is divisible and

Coker f is torsion-free.

A close connection between neat- and coneat-homomorphisms gives, if one

examines what makes pushouts and pullbacks the Hom and Ext functors resp..

We need the assertions in the next chapters always for a single prime element p

of R:

Definition 4.2 f : A→ A ′ is called p-neat if f −1(pA ′) = pA;

g : C ′ → C is called p-coneat if g(C ′[p]) = C[p].

Accordingly, it is favourable to use the functor Ap = A/pA besides the p-Socle

C[p] for the following proofs. A homomorphism α is p-neat if and only if αp is

a (splitting) monomorphism; and it is p-coneat if and only if α[p] is a (splitting)

epimorphism.

Lemma 4.3 Let the following first diagram be a pushout diagram and the second be a

pullback diagram:

A α //

f
²²

B
f ′

²²

B ′
β ′ //

g ′

²²

C ′

g
²²

A ′
α ′

// B ′ B
β

// C.
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Then we have

(I) If f is p-neat, then so is f ′. In addition, if α is p-coneat, then so is α ′.

(II) If g is p-coneat, then so is g ′. In addition, if β is p-neat, then so is β ′.

Proof (I) The functor {p} makes again a pushout from the first diagram so that

both f {p} and f ′{p} are monomorphisms. From the assumption, f is p-neat, further

we have B ′[p] = α ′(A ′[p]) + f ′(B[p]), so that both α and α ′ are coneat. �

Theorem 4.3 (1) For given X and ϕ : Y → Y ′ we have ϕ∗ : Hom(X,Y) →
Hom(X,Y ′) is p-coneat if and only if ϕ is p-coneat or X is p-divisible.

(2) For given C and f : A → A ′ we have f∗ : ExtR(C,A) → ExtR(C,A ′) is p-neat if

and only if f is p-neat or Tp(C) = 0.

(3) For given Y and γ : X ′ → X we have γ∗ : Hom(X,Y)→ Hom(X ′,Y) is p-coneat

if and only if γ is p-neat or Tp(Y) = 0.

(4) For given A and g : C ′ → C we have g∗ : ExtR(C,A) → ExtR(C ′,A) is p-neat if

and only if g is p-coneat or A is p-divisible.

Proof As is well known, one has the natural isomorphisms

Hom(X{p},Y[p]) � // Hom(X,Y)[p]

resp.

ExtR(C,A)[p] � // ExtR(C[p],A{p}).

With their help, one obtains the following commutative squares from the given

four homomorphisms

Hom(X{p},Y[p])
ϕ[p]. //

�

²²

Hom(X{p},Y ′[p])

�

²²

(1)

Hom(X,Y)[p]
ϕ∗[p] // Hom(X,Y ′)[p]
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ExtR(C,A){p}

�

²²

f∗{p} // ExtR(C,A ′){p}

�

²²

(2)

ExtR(C[p],A{p}) f {p}. // ExtR(C[p],A ′{p})

Hom(X{p},Y[p])
γ{p}. //

�

²²

Hom(X ′{p},Y[p])

�

²²

(3)

Hom(X,Y)[p]
γ∗[p] // Hom(X ′,Y)[p]

ExtR(C,A){p}

�

²²

g∗{p} // ExtR(C ′,A){p}

�

²²

(4)

ExtR(C[p],A{p}) g[p]
.

// ExtR(C ′[p],A{p}).
So the direction “⇐” is clear in all four cases, i.e. on Hom p-coneat homo-

morphisms and on ExtR p-neat homomorphisms are induced. In the cases

(1) and (2) resp. also the converse is clear since Hom(R/(p),Y[p]) � Y[p],

ExtR(R/(p),A{p} � A{p} resp.. In the case (3) and (4) one has, if Y[p] , 0, A{p} , 0

resp. by the assumption

surjective (γ{p}). : Hom(X{p},R/(p))→ Hom(X ′{p},R/(p))

injective (g[p]). : ExtR(C[p],R/(p))→ ExtR(C ′[p],R/(p)) resp..

With the equation γ{p} = γ{p} ◦ σ ◦ γ{p}, g[p] = g[p] ◦ ρ ◦ g[p] resp. one has (1−σ ◦
γ{p}).

= 0, (1−g[p] ◦ ρ).
= 0 resp., both times thus a semisimple p-module G with an

endomorphism u, for Fu = 0 holds where F = Hom(−,R/(p)), F = ExtR(−,R/(p))

resp.. But however, if u = 0, then the decomposition u = G π // Im u ι // G

yields 0 = FG Fι // F Im u Fπ // FG where Fπ is a splitting monomorphism, Fι

is a splitting epimorphism, thus F Im u = 0, Im u = 0. This implies however

σ ◦ γ{p} = 1, g[p] ◦ ρ = 1 resp. as desired. �

Corollary 4.8 If C is a module where Tp(C) , 0 for all prime elements p of R and

ExtR(C,A)κ ⊂ q ExtR(C,A), then every element of ExtR(C,A) is divisible by q.
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Proof We must show that A is q-divisible. Since all primary components

of C are nonzero, there is a coneat-homomorphism g : C → K/R such that

g∗ : ExtR(K/R,A) → ExtR(C,A) is neat and also preserves κ-elements, and then

ExtR(K/R,A)κ ⊂ q ExtR(K/R,A). For the connecting homomorphism δ : A →
ExtR(K/R,A) we have Im δ ⊂ ExtR(K/R,A)κ such that Im δ, as pure submodule of

ExtR is itself q-divisible. Since also Ker δ = D(A), the assertion follows. �

Under additional conditions one can also obtain that Hom preserves p-neat

homomorphisms and Ext preserves p-coneat homomorphisms:

Lemma 4.4 Let the four homomorphisms be given as in Theorem 4.3 :

(1) If X is torsion-free and Y is cotorsion, then we haveϕ∗ : Hom(X,Y)→ Hom(X,Y ′)

is p-neat if and only if ϕ is p-neat or X is p-divisible.

(2) If C is divisible and A ′ is reduced, then we have f∗ : ExtR(C,A) → ExtR(C,A ′) is

p-coneat if and only if f is p-coneat or Tp(C) = 0.

(3) If Y is divisible, then we have γ∗ : Hom(X; Y)→ Hom(X ′,Y) is p-neat if and only

if γ is p-coneat or Tp(Y) = 0.

(4) If C ′ is torsion and A is torsion-free, then we have g∗ : ExtR(C,A)→ ExtR(C ′,A)

is p-coneat if and only if g is p-neat or A is p-divisible.

Proof We will prove only the first one. By (1) one has a short exact sequence

0 −→ X −→ Q −→ C −→ 0 where Q is torsion-free divisible, and hence a

commutative diagram with exact rows:

Hom(Q,Y) // Hom(X,Y) δ //

ϕ∗
²²

ExtR(C,Y) //

ϕ.

²²

0

Hom(Q,Y ′) // Hom(X,Y ′) δ ′ // ExtR(C,Y ′) // ExtR(Q,Y ′).

It is obvious that δ and δ ′ are both neat and coneat. Now if ϕ is p-neat, then

by Theorem (4.3, 2) ϕ. is also p-neat. Therefore ϕ∗ is p-neat; but if X is divisible,

then Hom(X,Y) is also divisible, such that ϕ∗ is trivially p-neat. Conversely, let ϕ∗

be p-neat and X is not p-divisible: Then ϕ. is p-neat, due to the surjectivity of δ.

Furthermore Tp(C) , 0, and again by Theorem (4.3, 2) ϕ is p-neat. �
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CHAPTER 5

FOR THE PROBLEM ExtR(C,A)κ = ExtR(C,A)β

The submodule of the β-elements of ExtR(C,A) can be described according

to Lemma 3.2 with the help of projective resolution of C. If almost all primary

components in C are zero, it coincides with the set of κ-elements of ExtR(C,A). We

want to set a question by this similarity, and give an answer in case T(A) ⊂⊕ A.

In the extreme case, when ExtR(C,A) has no κ-elements at all, it was already

done by the proof of Theorem 3.2 and by the Corollary to Theorem 4.3:

Theorem 5.1 For a pair (A,C) the following are equivalent:

(i) ExtR(C,A)κ ⊂ Rad(ExtR(C,A)).

(ii) ExtR(C,A)κ = 0.

(iii) ExtR(C,T(A)) is divisible, and if Tp(C) , 0 for all prime elements p of R, then A is

divisible.

Lemma 5.1 If g : C ′ → C is a monomorphism, then g∗ : ExtR(C,A)→ ExtR(C ′,A) is

also surjective on the κ-elements.

Proof Step 1. Assume the sequence

E ′ = 0 // A // B ′
β ′ // C ′ // 0 is not only κ-exact, but also Ker β ′ is small

in B ′. Since g is injective, there is a commutative diagram with exact rows

E ′ = 0 // A // B ′
β ′ //

²²

C ′ //

g
²²

0

E = 0 // A // B
β

// C // 0,

and necessarily Ker β is small in B, thus certainly [E] ∈ ExtR(C,A)κ with g∗([E]) =

[E ′].

Step 2. Now let E ′ in be κ-exact, V be a supplement of Ker β ′ in B ′. We obtain the

following two diagrams where A1 = V ∩ Ker β ′

E1 = 0 // A1

f
²²

⊂ V
β ′|V //

∩

C ′ // 0

E ′ = 0 // A // B ′ // C ′ // 0
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and

ExtR(C,A1)
g.

//

f∗
²²

ExtR(C ′,A1)

f.
²²

ExtR(C,A)
g∗

// ExtR(C ′,A).

However there is just one x ∈ ExtR(C,A1) for E1 where g.(x) = [E1] such that

f∗(x) ∈ ExtR(C,A)κ with g∗( f ∗(x)) = f.([E1]) = [E ′] as desired. (Similarly, one can

show by the second step that g∗ is also surjective on β-elements.) �

Lemma 5.2 (a) Let (Ci | i ∈ I) be a nonempty family of modules,

ω : ExtR(
∐

Ci,A)→∏
ExtR(Ci,A)

be the canonical isomorphism and x ∈ ExtR(
∐

Ci,A). Then; if all projections of

w(x) are κ-elements, and almost every projection of w(x) is equal to zero, then x is

also a κ-element.

(b) Let C be a torsion module, ω : ExtR(C,A) → ∏
ExtR(Tp(C),A) be the canonical

isomorphism and x ∈ ExtR(C,A). Then; if all projections of w(x) are κ-elements,

then x is also a κ-element.

Proof

(a) Let E = 0 // A α // B
β //

∐
Ci

// 0 be an exact sequence where [E] =

x. With the inclusion ε j : C j →
∐

Ci and with B j = β−1(Im ε j) we obtain

Eε j ≡ 0 // A // B j //

∩

C j //

ε j

²²

0

E = 0 // A α
// B

β
//
∐

Ci
// 0,

as well as B/ Imα =
⊕

i∈I Bi/ Imα. By assumption we have a supplement V j

of Imα in B j, for each j ∈ I, and the additional condition V j ∩ Imα = 0 for

almost all j. Then (
∑

V j) + Imα = B and (
∑

V j) ∩ Imα =
∑

(V j ∩ Imα), the

sum is finite due to the additional condition, thus it is small in
∑

Vi.

(b) With the corresponding descriptions each Vp is a small cover of Bp/ Imα �

Tp(C) and p-primary, thus without any extra condition
∑

(Vp ∩ Imα) is small

in
∑

Vp.

�
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Remark 5.1 x ∈ ExtR(
∐

Ci,A) can be a κ-element, without any projection of ω(x). As

an example one can choose ω : ExtR(K/R,R) � //
∏

ExtR(R(p∞),R and x = [0→ R ⊂
K→ K/R→ 0].

Remark 5.2 By (a) it follows directly that if each ExtR(C1,A), . . . ,ExtR(Cn,A) is κ-full,

then ExtR(
⊕n

i=1 Ci,A) is also κ-full. It is not true for infinitely many summands. For

example, let C = R/(p) and A be a reduced unbounded p-module. Indeed ExtR(C,A)

is κ-full, however ExtR(C(N),A) is not, since there is an epimorphism of A on M =
∐∞

n=1 R/(Rpn), and ExtR(M/pM, pM) is not κ-full by (Zöschinger 1974b) (Satz 5.3).

Lemma 5.3 (a) If ExtR(C,A)κ ⊂κ T(ExtR(C,A)), then ExtR(C,T(A)) is divisible by

almost all prime elements p of R.

(b) If ExtR(C,T(A)) is divisible by almost all prime elements p of R, and either a primary

component of C is equal to zero or A is torsion, then ExtR(C,A)κ = ExtR(C,A)β.

Proof

(a) By Lemma 5.1 each κ-element in ExtR(T(C),A) is also a torsion element,

and since the claimed divisibility condition depends only on T(C), we can

assume that C is torsion. Choose x ∈ ExtR(C,A) such that by the isomorphism

ω : ExtR(C,A)→∏
ExtR(Tp(C),A) all projections of ω(x) are κ-elements, and

only the p-th projection is zero when ExtR(Tp(C),A)κ = 0. By Lemma 5.2b we

have x ∈ ExtR(C,A)κ, so the assumption gives ω(x) ∈ T(
∏

ExtR(Tp(C),A)) =
∐

T(ExtR(Tp(C),A)). By choice of ω(x) therefore ExtR(Tp(C),A)κ = 0 for

almost all prime elements p of R, and this indicates just the p-divisibility of

ExtR(C,T(A)) for almost all prime elements p of R by Theorem 5.1.

(b) The assumptions also hold for A ′ = A/D(A), and since the canonical isomor-

phism v∗ : ExtR(C,A) → ExtR(C,A ′) preserves κ-elements and also reflects

β-elements, we will assume that A is reduced. Now let the sequence

0 // A α // B // C // 0 be κ-exact, and V be a supplement of Imα in

B.

Case 1. At least one primary component of C is zero. Then V∩Imα is torsion

and coatomic, in addition Tp(V ∩ Imα) = 0 for almost all prime elements p

of R, thus V ∩ Imα is bounded.
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Case 2. A is torsion. For a moment we can assume that Tp(C) , 0 for all

prime elements p of R (otherwise we have done) such that currently accord-

ing to assumption Tp = 0 for almost all prime elements p of R, thus again

V ∩ Imα is bounded.

�

Corollary 5.1 If ExtR(C, Soc(K/R))κ ⊂ T(ExtR(C, Soc(K/R))), then almost all primary

components of C are zero, and then ExtR(C,A)κ = ExtR(C,A)β for all prime elements p of

R.

Lemma 5.4 For a module A the following are equivalent:

(i) ExtR(Soc(K/R),A)κ = ExtR(Soc(K/R),A)β.

(ii) A is divisible by all prime elements p of R, and A/T(A) is divisible.

(iii) ExtR(C,A) is β-full for each torsion module C where all of the primary components

are finitely generated.

Proof (i⇒ ii) Simply T(A) is divisible by almost all prime elements p of R. Now

let S/R = Soc(K/R) and δ : A → ExtR(S/R,A) be the connecting homomorphism

belonging to the κ-exact sequence 0 −→ R ⊂ S −→ S/R −→ 0. Obviously,

each element of Im δ is a κ-element, so by assumption it is a β-element, and this

indicates T(A)+Ker δ = A by Lemma 3.2. But since Ker δ = Rad(A), the divisibility

of A/T(A) holds.

(ii ⇒ iii) From the assumption on C, ExtR(C,T(A)) is κ-full, hence also β-full by

Lemma 5.3b. Since ι∗ : ExtR(C,T(A)) → ExtR(C,A) is an isomorphism, the claim

follows. �

Theorem 5.2 Let C be arbitrary, T(A) ⊂⊕ A. Then the following are equivalent:

(i) ExtR(C,A)κ = ExtR(C,A)β.

(ii) ExtR(C,T(A)) is divisible by almost all prime elements p of R, and if Tp(C) , 0 for

all prime elements p of R, then A/T(A) is divisible.
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Proof With the statements on hand there is almost nothing more to be shown.

(i ⇒ ii) By Lemma 5.3a we can assume Tp(C) , 0 for all prime elements p of R.

Then there is a monomorphism g : Soc(K/R) → C, and since g∗ : ExtR(C,A) →
ExtR(Soc(K/R),A) is surjective on the κ-elements, A/T(A) is divisible by Lemma

5.4.

(ii⇒ i) Again due to Lemma 5.3b we can assume Tp(C) , 0 for all prime elements

p of R. Since A splits and A/T(A) is divisible, the isomorphism ι∗ : ExtR(C,T(A))→
ExtR(C,A) is also surjective on κ-elements, and by Lemma 5.3b the κ-elements

coincide with the β-elements in ExtR(C,T(A)), and also in ExtR(C,A). �

Remark 5.3 The proof shows that inclusion (i ⇒ ii) also holds without the important

assumption T(A) ⊂⊕ A. It is not the case for (ii ⇒ i): Let M be a reduced unbounded

p-module and 0 −→ M −→ A −→ K −→ 0 be representative of non zero elements of

ExtR(K,M). Then ExtR(K/R,T(A)) is divisible by all prime elements p of R except p and

A/T(A) � K. However since T(A) does not split, the image of connecting homomorphism

A→ ExtR(K/R,A) does not consist of only torsion elements, and hence ExtR(K/R,A)β &

ExtR(K/R,A)κ.
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CHAPTER 6

THE DEPTH SEQUENCE OF MODULE ELEMENTS

In the next chapter, the κ-elements of ExtR(C,A) will be characterized by

divisibility property. In Theorem 7.3 it is found that why the usual measure

– the p-height of x ∈ G – is too strong. While the p-height of x is the greatest p-

power which can be withdrawn from x, we are interested in the smallest p-power

which must be withdrawn from x, therefore “the rest” (of course not uniquely

determined) is no longer divisible by p.

Definition 6.1 For x ∈ G, tG
p (x) = inf{i ∈ N | there is y ∈ G \ pG where x = piy} is

called the p-depth of x in G and

tG(x) = (tp(x)) ∈∏
p∈PN

p

is called the depth sequence of x in G where pi are all prime elements of R.

Thus tG
p (x) is an element of N ∪ {∞}, and it coincides with hG

p (x) for a

torsion-free G. However in general the p-depth is smaller than the p-height, e.g.

for n > 1 the p-depth of zero elements of R/(Rpn) are just n. First we want to

derive something over tG
p (0).

Lemma 6.1 If V is a supplement of G[pn] in G, then V is a direct summand in G.

Proof It remains show that the canonical epimorphism G[pn]→ G/V splits, thus

its kernel V[pn] is p-pure in G[pn], and it is obviously equivalent with {x ∈ G | pnx =

0, pix ∈ V } ⊂ G[pi] + V for all 0 6 i 6 n. We show this by induction on i. For i = 0

there is nothing to prove. For i + 1 we choose x ∈ G where pnx = 0, pi+1x ∈ V. By

inductive hypothesis, px = x1+v where pix1 = 0. Since v = px−x1 ∈ V∩G[pn] ⊂ pV,

we have v = pv1, thus x = (x − v1) + v1 where pi+1(x − v1) = pi(x1 + v − v) = 0. �

Remark 6.1 The dual case is a well-known theorem of Khabbaz (Khabbaz 1961):

Every intersection complement of pn[G] is a direct summand. Our statement is true in

general, indeed G[pn] (more generally every bounded submodule) has a supplement in G.
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Lemma 6.2 For an R-module G, the following are equivalent:

(i) tG
p (0) 6 n.

(ii) pnG is not essential in G.

(iii) G[pn] is not small in G.

(iv) G = G1 ⊕ G2 with G1 � R/(pe) where 1 6 e 6 n.

Proof (i ⇒ iii) There is y ∈ G \ pG where y ∈ G[pn], i.e. G[pn] 1 pG. But then

G[pn] is not small in G.

(iii⇒ iv) For a supplement V of G[pn] in G we get V ⊕ X = G by what we have

done above. By assumption X , 0, and of course bounded by pn, so that the claim

holds.

(iv⇒ ii) G1[p] 1 pnG1, therefore pnG is not essential in G.

(ii⇒ i) There is an element y < G[p] such that y < pnG, thus there is also an element

y1 ∈ G \ pG such that y = pey1, e < n. From 0 = pe+1y1 the claim holds. �

Remark 6.2 Obviously, tG
p = ∞ if and only if Tp(G) is divisible. If tG

p (0) is finite, then

σ = tG
p (0) − 1 where σ is the smallest such number where σ-th Ulm invariant of Tp(G) is

nonzero.

Theorem 6.1 For x ∈ G we have tG
p (x) = min(hG

p (x), tG
p (0)).

Proof (1) We always have tG
p (x) 6 hG

p (x), because for hG
p (x) there is nothing to

prove, and it follows from hG
p (x) = n that x = pny where y ∈ G \ pG, so tG

p (x) 6 n.

(2) We always have tG
p (x) 6 tG

p (0), because for tG
p (0) = ∞ there is nothing to prove,

and from tG
p (0) = n we get 0 = pnz where z ∈ G \ pG. For all y ∈ G, now we have

z + py < pG, thus tG
p (pn+1y1) 6 n; however if x < pn+1G, then tG

p (x) 6 n.

(3) From tG
p (x) < hG

p (x) where tG
p (x) = n, we get y1 ∈ G and y2 ∈ G \ pG with

x = pn+1y1 = pny2, so that 0 = pn(py1 − y2) gives tG
p (0) 6 n, thus tG

p (x) = tG
p (0) �

Corollary 6.1 tG
p (x) 6 n if and only if there is an element y ∈ G \ pG where pny ∈ Rx.

Lemma 6.3 For x ∈ G, 0 , r ∈ R we have tG
p (rx) = min(tG

p (x) + e, tG
p (0)), where e is the

highest p-power in r (and if necessary∞ + e = ∞).
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Proof (1) We have tG
p (rx) 6 tG

p (x) + e, because for tG
p (x) = ∞ there is nothing to

prove, and from tG
p (x) = n we get x = pny with y ∈ G \ pG, so that where r = r ′pe,

further we get rx = pn+e(r ′y), r ′y < pG, thus tG
p (rx) 6 n + e.

(2) Clearly, by the theorem tG
p (rx) 6 tG

p (0).

(3) Again by the theorem tG
p (rx) = min(hG

p (rx), tG
p (0)) > min(hG

p (x) + e, tG
p (0)) >

min(tG
p (x) + e, tG

p (0)). �

Remark 6.3 The formula means in particular that if tG
p (x) = tG

p (y), then tG
p (rx) = tG

p (ry)

for all r ∈ R. The corresponding statement is not true for the p-height.

Corollary 6.2 (a) We always have tG
p (x) 6 tG

p (px) 6 tG
p (x) + 1, and tG

p (x) = tG
p (px) if

and only if tG
p (x) = tG

p (0).

(b) If tG
p (pex 6 e), then tG

p (x) = 0 or e > tG
p (0).

(c) If rx = sy where both r and s are nonzero, then tG
p (x) ∼ tG

p (y), where ∼ is the

usual equivalence of sequences, see (Fuchs 1973) (p. 109). Particularly the depth

sequence of torsion elements is equivalent to the depth sequence of zero elements.

Lemma 6.4 Let f : A→ A ′ be a homomorphism. Then

(I) tA ′
p ( f a) 6 tA

p (a) for all a ∈ A if and only if f is p-neat.

(II) tA ′
p ( f a) > tA

p (a) for all a ∈ A if and only if tA ′
p (0) > tA

p (0). If it is satisfied, f is

p-coneat.

Proof

(I) If the inequality holds, f must be p-neat; and conversely, since f is p-neat,

tA
p (a) = n, we get a = pna1 where a1 ∈ A \ pA, thus f a = pn( f a1) where

f a1 ∈ A ′ \ pA ′, therefore tA ′
p ( f a) 6 n.

(II) The equivalence is clear by Theorem 6.1. Now let f be p-coneat. From

tA ′
p (0) = n, there exists a ′ ∈ A ′[p] where a ′ < pnA ′, additionally there is also

a ∈ A[p] where f a = a ′, so that a < pnA must hold, and so tA
p (0) 6 n.

�
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Corollary 6.3 If x ∈ G and f : G→ G is an endomorphism, then tG
p ( f x) > tG

p (x).

Lemma 6.5 (a) If (Ai | i ∈ I) is a nonempty family of modules, and x ∈ G =
∏

i∈Ai,

then tG
p (x) = min{tAi

p (xi) | i ∈ I}; the same formula holds if G =
∐

Ai.

(b) If U ⊂ ⋂∞
i∈I piG, then tG/U

p (x) = tG
p (x) for all x ∈ G.

(c) If x ∈ U ⊂ G and U is p-pure in G, then tG
p (x) = min(tU

p (x), tG/U
p (0)).

(d) If X and Y are torsion modules and ϕ ∈ Hom(X,Y), then the p-depth of ϕ in

Hom(X,Y) is equal to the p-depth of ϕp in Hom(Tp(X),Tp(Y)).

Proof

(a) For all i ∈ I, tG
p (x) 6 tAi

p (xi), since the projections G→ Ai are coneat; however

also if tG
p (x) > min, then for tG

p (x) = ∞ there is nothing to prove, and from

tG
p (x) = n we get x = pny where y ∈ G \ pG, so that at least one y j is not

divisible by p, thus tA j
p (x j) 6 n. The proof is similar for the sum.

(b) Since the canonical map G → G/U is p-neat, 6 holds; however tG/U
p (x) = n,

hence from x = pny, we get y is not divisible by p, that x− pny ∈ U, x− pny =

pn+1y1, thus x = pn(py1 + y) where py1 + y < pG, therefore tG
p (x) 6 n.

(c) Step 1. x = 0. Since U ⊂ G is p-neat, we get tG
p (0) 6 tU

p (0), and since

G → G/U p-coneat we get tG
p (0) 6 tG/U

p (0), hence together tG
p (0) 6 min;

however tG
p (0) < min thus U[p] ⊂ pnU as well as (G/U)[p] ⊂ pn(G/U) for

n = tG
p (0), so it follows from the p-purity that G[p] ⊂ pnG which is not

possible.

Step 2. Let x ∈ U be arbitrary. Then we have

tG
p (x) = min(hG

p (x), tG
p (0)) = min(hU

p (x), tU
p (0), tG/U

p (0)) = min(tU
p (x), tG/U

p (0)).

(d) The canonical map Hom(X,Y)→ Hom(Tp(X),Tp(Y)) is an epimorphism with

p-divisible kernel so that the claim yields by (b).

�
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In view of Chapter 7, we are interested up until now the p-depth of elements

of Hom(X,Y) and ExtR(C,A), resp.. After Theorem 6.1 we proceed about the p-

depth of zero elements, and we first want to obtain a lemma for the special case

X = R/(pn) and C = R/(pn) respectively. Let G{pn} = G/pnG as before.

Lemma 6.6 For a module G;

(I) If G[pn] , 0, then tG[pn]
p (0) = min(tG

p (0),n).

(II) If G{pn} , 0, then tG{pn}
p (0) = min(tG

p (0),n) as before.

Proof

(I) Since n > 1, the map G[pn] ⊂ G is p-coneat, thus tG[pn]
p (0) 6 tG

p (0), and since

G[pn] , 0, we have tG[pn]
p (0) 6 n. But if e = tG[pn]

p (0) is properly smaller than

tG
p (0), then it follows from 0 = pey where y ∈ G[pn], y < p(G[pn]), that y = py1

for some y1 ∈ G, thus e + 1 > n, e = n.

(II) Similarly, for e = tG{pn}
p (0), we have e 6 min(tG

p (0)). But if e < n, it follows

from 0 = pey where y < p(G{pn}) that pey = pe+1y1 for some y1 ∈ G, thus

0 = pe(py1 − y) where py1 − y < pG, so e = tG
p (0).

�

Theorem 6.2 For a pair of modules (X,Y) and (A,C) resp. we have:

(I) If X is not p-divisible and Tp(Y) , 0, then

tHom(X,Y)
p (0) = min(tX

p (0), tY
p (0)).

(II) If A is not p-divisible and Tp(C) , 0, then

tExtR(C,A)
p (0) = min(tA

p (0), tC
p (0)).

Proof The conditions on X, Y and A, C resp. indicate no proper limitation,

because without the p-depth of zero elements of Hom and Ext, resp. they are

infinite. Only for the proof we will write shortly t(G), instead of tG
p (0).

(I) In particular, if X =
⊕

i∈I Xi, where I , ∅, 0 , Xi is cyclic and p-primary

for all i ∈ I, then the formula is true, because by the lemma t(Hom(Xi,Y)) =
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min(t(Xi), t(Y)), by Lemma 6.5a, thus t(Hom(X,Y)) = min{min(t(Xi), t(Y)) | i ∈ I} =
min(min{t(Xi) | i ∈ I}, t(Y)) = min(t(X), t(Y)). Therefore for each non p-divisible X

and each n > 1 we have:

min(t(Hom(X,Y)),n) = t(Hom(X,Y)[pn]) = t(Hom(X{pn},Y))

= min(t(X), t(Y),n). (∗)

Now if t(X) or t(Y) is finite, Hom(X,Y) contains a direct summand which is

nonzero and bounded by a power of p, so that t(Hom(X,Y)) is also finite. But if

t(X) = t(Y) = ∞, then (*) implies that t(Hom(X,Y)) > n for all n > 1, thus also

t(Hom(X,Y)) = ∞.

(II) In particular, if C =
⊕

i∈I Ci, where I , ∅, each Ci is cyclic, p-primary

and nonzero, then one can see that the formula is correct again by Lemma 6.5a

and by the lemma. But if C is arbitrary where Tp(C) , 0, then for each n > 1 we

have

min(t(ExtR(C,A)),n) = t(ExtR(C,A){pn}) = t(ExtR(C[pn],A))

= min(t(A), t(C),n), (∗∗)

and the same conclusions as in (I) prove the claim. �

Corollary 6.4 If X is arbitrary, Y is divisible with Tp(Y) , 0 and ϕ ∈ Hom(X,Y), then

tHom(X,Y)
p (ϕ) = inf{i ∈N | X[p] 1 pi(Kerϕ)}.

Proof We will first show that hp(ϕ) = sup{i ∈N | X[pi] ⊂ Kerϕ}. If n ∈N where

hp(ϕ) > n, then from ϕ = pnψ we get immediately X[pn] ⊂ Kerϕ. Conversely, it

follows from X[pn] ⊂ Kerϕ that ϕ is factorized through X → pnX, say ϕ0, and

due to the divisibility of Y this ψ0 is induced by ψ ∈ Hom(X,Y). One can obtain

ϕ = pnψ, so hp(ϕ) > n. Therefore the height formula is clear.

If n ∈ N where tp(ϕ) 6 n, then we have ϕ = peψ where e 6 n, ψ not divisible by

p. It just implies that X[p] 1 Kerψ, such that from pn(Kerϕ) ⊂ Kerψ, we also

have X[p] 1 pn(Kerϕ). Conversely, it follows from X[p] 1 pn(Kerϕ) also tp(ϕ) 6 n,

because if hp(ϕ) 6 n there is nothing to prove, and if hp(ϕ) 
 n, thus ϕ = pn+1ψ,

it follows from pn(Kerϕ) = Ker(pψ) ∩ pnX that X[p] 1 pnX, thus by the theorem

tHom(X,Y)
p 6 n. �
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Corollary 6.5 If M is p-primary and ϕ ∈ Hom(M,R(p∞)), then

(a) ϕ is coneat if and only if tp(ϕ) = 0.

(b) If M is indecomposable, then tp(ϕ) = L(Kerϕ).

(c) If m 6 tM
p (0), then m − L(ϕ(M[pm])) = min(tp(ϕ),m).

Proof The first statement which is just shown gives the second, because for in-

decomposable M, the condition M[p] 1 pi(Kerϕ) is equivalent with the statement

Kerϕ ⊂ M[pi]. By (c), we can assume m > 0 and tp(ϕ) < ∞. With n = m − 1

now the assumption becomes tHom(X,Y)
p 
 n, so that for each e > 0 the series

are equivalent to the following: L(ϕ(M[pm])) > e, peϕ(M[pm]) , 0, hp(peϕ) 6 n,

tp(peϕ) = min(tp(ϕ) + e, tp(0)) 6 n, m − tp(ϕ) > e. Hence it follows directly that

L(ϕ(M[pm])) = max(0,m− tp(ϕ)) as claimed. (It is easy to give an example that, for

m > tM
p (0) the investigated length does not only depend on tp(ϕ). �
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CHAPTER 7

THE κ-ELEMENTS OF ExtR(C,A) FOR C TORSION, A

TORSION-FREE OF RANK 1

Throughout this chapter the pair (A,C) is as in the title, and we will assume

that R ⊂ A ⊂ K. For each [E] ∈ ExtR(C,A) there is a commutative diagram with

exact rows

(�)

E = 0 // A α // B
β //

f ′

²²

C //

f
²²

0

0 // A ⊂ K ν
// K/A // 0,

that we cite by (�) in the following. By means of the connecting isomorphism

ϑ : Hom(C,K/A) → ExtR(C,A), we write ϑ( f ) = [E], and we want to study the

supplement property of E by describing f .

Lemma 7.1 Let (�) be given, 0 , a0 ∈ A. Then the following are equivalent:

(i) Imα has a supplement V in B where α(a0) ∈ V.

(ii) There are homomorphisms λ, µ, ϕ where µϕ = f , µλ = ν, ϕ is coneat, λ is small

epimorphism and a0 ∈ Kerλ:

C
ϕ

~~||
||

||
||

|
f

²²
K

λ
// .

µ
// K/A.

(iii) For each prime element p of R, Tp(C) , 0 and tHom
p ( f ) 6 hA

p (a0).
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Proof For the equivalence of (i) with (ii), we consider the following two dia-

grams:

B //

²²

C

ω ′

ªª¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶

²²

B //

²²

C

ϕ

ªª¶¶
¶¶
¶¶
¶¶
¶¶
¶¶
¶¶
¶¶
¶¶
¶¶
¶¶

²²

V

ω

ªª··
··
··
··
··
··
··
··
··
··
·

γ

44hhhhhhhhhhhhhhhhhhhhhhhhhO/

⊇
_????????

.

α
^^=

=
=

=

ϕ ′

¸
¸
¸
¸
¸
¸
¸
¸
¸
¸
¸

λ ′

44iiiiiiiiiiiii

PO PB

.

µ !!C
C

C
C .

µ !!CC
CC

CC
CC

K //
γ ′

44hhhhhhhhhhhhh K/A K //
λ

44hhhhhhhhhhhhhhhhhhhhhhhh K/A

(i ⇒ ii) We have a supplement V of Ker β in B where α(a0) ∈ V so one forms

the pushout diagram from ω = f ′ |V and γ = β |V; since νω = fγ exist and

also by µ where µω ′ = f and µγ ′ = v, and it remains to show that ω ′ and

γ ′ have the desired property: With γ naturally small epimorphism, γ ′ is also

a small epimorphism, and by Lemma 4.3 ω and ω ′ are coneat; finally we get

γ ′(a0) = γ ′ω(αa0) = ω ′γ(αa0) = 0, thus a0 ∈ Kerγ ′.

(ii ⇒ i) We have λ, µ, ϕ as stated, so we construct a pullback diagram from λ

and ϕ, since fλ ′ = νϕ ′ exist ε where βε = λ ′ and f ′ε = ϕ ′. Since ϕ is coneat, λ

and λ ′ are small epimorphisms, in particular ε(Kerλ ′) = Im ε ∩ Ker β is small in

Im ε such that Im ε is a supplement of Ker β in B, finally since there is an x with

ϕ ′(x) = a0 and λ ′(x) = 0, the element α(a0) = ε(x) is in Im ε.

(ii⇒ iii) Obviously, we can assume f = C
ϕ // K/U

µ // K/A where a0 ∈ U ⊂ A,

U is coatomic and µ is canonical. Since ϕ is coneat and K/U � K/R, no primary

component can be zero in C. If hA
p (a0) = ∞, the claimed inequality is certainly true.

Let hA
p (a0) < ∞. Then Kerµp = Tp(A/U) has the finite length ep = hA

p (a0) − hU
p (a0),

so that µp = pepωp holds for any isomorphism ωp, and since ωpϕp is coneat with

fp = pep(ωpϕp), we have tp( f ) = tp( fp) 6 ep 6 hA
p (a0) as claimed.

(iii⇒ ii) Let P = {p | p is prime element of R and A is not p-divisible}. For each p ∈ P

one has, fp = pep gp where gp is coneat ep 6 hA
p (a0) < ∞, by assumption. In addition,

there is precisely one intermediate module a0 ∈ U ⊂ K where hU
p (a0) = hA

p (a0)− ep if

p ∈ P, hU
p (a0) = 0 if p < P. It follows that U is a coatomic submodule of A, and that

for the canonical map µ : K/U → K/A there is an isomorphism ωp (p ∈ P) where
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µp = pepωp. Now one can define ϕ : C → K/U: For p < P, ϕ is coneat (which is

possible since Tp , 0), for p ∈ P ϕp = ω−1
p gp, and so that follows µϕ = f as well as

ϕ is coneat. �

Remark 7.1 For the equivalence (i ⇔ ii) one can also accept that a0 = 0. Then the

concept “supplement” seems as the reduction of “direct summand,” because the latter

asserts naturally in diagram (�) that f can be completely factorized through ν.

Theorem 7.1 Let (�) be given. Then the following are equivalent:

(i) Imα ⊂κ B.

(ii) If [E] , 0, then Tp(C) , 0 for all p and c` tExtR([E]) 6 τ(A).

(iii) If f , 0, then

(a) Tp(C) , 0 for all p,

(b) A is not p-divisible and C is p-divisible⇒ fp , 0,

(c) for almost all p, tHom
p ( f ) 6 hA

p (1).

Proof (i ⇒ ii) Let c` be the class formation, as the usual height sequences is,

and τ(A) be so called type of A, i.e. c` hA(1). Let V be a supplement of Imα in

B. Since [E] , 0, we have V ∩ Imα , 0, thus α(a0) ∈ V for some 0 , a0 ∈ A, and

by the Lemma it follows that Tp(C) , 0 for all prime elements p of R, as well as

c` tExtR([E]) 6 c` hA(a0) = τ(A).

(ii ⇒ iii) If A is not p-divisible and C is p-divisible, then the p-depth of zero

elements of Hom(Tp(C),Tp(K/A)) are infinite.

(iii ⇒ i) For f = 0 there is nothing to prove. Let f , 0, P = {p | p is prime

element of R and tp( f ) 
 hA
p (1)}. If P = ∅, we are done by the Lemma, otherwise

by the assumption P is at least finite, say P = {p1, . . . , pk}. For these p, we also

have tp( f ) < ∞ by (b), and we similarly see that there are g and ei > 0 where

f = pe1
1 . . . p

ek
k g, tpi(g) = 0 for all i. By Lemma 6.3 we have tp(g) 6 hA

p (1) for all prime

elements p of R such that g is a κ-element by the Lemma, therefore it is also a

multiple of f .

It remains to show that: If G is a module, x ∈ G, and p1, . . . , pk are pairwise distinct

prime elements p of R where tG
pi

(x) = ei < ∞ for all i, then there is an element y ∈ G
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such that tG
pi

(y) = 0 for all i and x = pe1
1 . . . p

ek
k y. For k = 1, it follows by the definition

of the depth, and for k > 2 by induction with the help of Lemma 6.3. �

Remark 7.2 Whether ϑ( f ) is a κ-element of ExtR(C,A) or not can be decided only by

Ker f by the first Corollary to Theorem 6.2. In the special case C = K/R one can also read

the condition (iii) of Theorem: If f , 0, there is an epimorphism from A onto Ker f .

Corollary 7.1 If ExtR(C,A)κ contains a nonzero torsion element, then ExtR(C,A) is

κ-full.

Proof Let 0 , x ∈ ExtR(C,A) be both κ-element and torsion element. Then it

follows that Tp(C) , 0 for all p, as well as c` tExtR(0) = c` tExtR(x) 6 τ(A), and hence

c` tExtR(y) 6 ϑ(A) for all y ∈ ExtR(C,A). �

Corollary 7.2 If Tp(C) , 0 for all prime elements p of R, then every element of

ExtR(C,A) is a sum of two κ-elements.

Proof Let f ∈ Hom(C,K/A). We look for a decomposition of fp for each prime

element p of R:

Case 1. Tp(C) has a nontrivial decomposition, say M1 ⊕M2. Then there are coneat

homomorphisms αi : Mi → Tp(K/A), such that both gp
′ =< α1, fp |M2 −α2 >, and

gp
′′ =< fp |M1 −α1, α2 > are coneat where gp

′ + gp
′′ = fp.

Case 2. Tp(C) is indecomposable. For any prime element p of R we have again

fp = gp
′ + gp

′′ where gp
′ and gp

′′ are coneat, then in the endomorphism ring

EndR(Tp(C)) every element is a sum of two units. �

As an application of the theorem we want to prove that when ExtR(C,A) isκ-

full, and in addition, examine more generally for any homomorphism g : C ′ → C

when the kernel resp. image consists only of κ-elements for the induced map

g∗ : ExtR(C,A)→ ExtR(C ′,A).

Lemma 7.2 Let g : C ′ → C be given where C ′ is torsion, g∗ : ExtR(C,A) →
ExtR(C ′,A). Then

(I) If Ω = {p is prime element of R, | A is not p-divisible and gp , 0}, then the following

are equivalent:

(i) Im g∗ contains only κ-elements.
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(ii) If Im g∗ , 0, then

(a) Tp(C ′) , 0 for all p,

(b) A is not p-divisible and C ′ is p-divisible⇒ Ω = {p},
(c) for almost all prime elements p of R, tC ′

p (0) 6 hA
p (1).

(II ) If Ψ = {p is prime element of R | A is not p-divisible and gp is not surjective}, then

the following are equivalent:

(i) Ker g∗ contains only κ-elements.

(ii) If Ker g∗ , 0, then

(a) Tp(C) , 0 for all p,

(b) A is not p-divisible and C ′ is p-divisible⇒Ψ = {p},
(c) for almost all prime elements p of R, tC

p (0) 6 hA
p (1).

Proof (I) (i ⇒ ii) Obviously Ω = ∅ is equivalent to the statement that g∗ = 0.

Therefore, let Im g∗ , 0, q ∈ Ω. Choose f : C→ K/A such that fqgq , 0 and fp = 0

for all p , q. Then 0 , f g = g∗( f ) is a κ-element by assumption, thus (a) and (c) are

satisfied. For (b) suppose A is not p-divisible, C ′ is p-divisible: Since ( f g)p , 0, it

follows that p ∈ Ω; but then it would give another q ′ ∈ Ω where q ′ , p, such that

f ′g (with one f ′ similar to f ) would be κ-element by assumption, in particular

( f ′g)p , 0, which is not possible.

(ii ⇒ i) Let f : C → K/A be given where f g , 0 (otherwise the proof is done).

To show that f g is a κ-element, it remains only to prove the case when A is not

p-divisible, C is p-divisible: Then by assumption ( f g)r = 0 for all prime elements

of R r , p, thus ( f g)p , 0.

(II) From the exact sequence C ′
g // C ν // Coker g // 0 , since C ′ and

C are torsion and A is torsion-free, one obtains the exact sequence

0 // ExtR(Coker g,A) ν∗ // ExtR(C,A)
g∗ // ExtR(C ′,A) , as well as Ψ = {p is

prime element of R | A is not p-divisible and νp , 0}. If one applies part (I) on

ν∗, the claim follows. �

Corollary 7.3 If Tp(C) , 0, the following are equivalent:

(i) ExtR(C,A) is κ-full.
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(ii) If A is not divisible by at least two prime elements p of R, then c` tExtR(0) 6 τ(A).

(iii) If A is not divisible by at least two prime elements p of R, then:

(a) A is not p-divisible⇒ C is not p-divisible,

(b) for almost all prime elements p of R, tC
p (0) 6 hA

p (1).

Proof (i⇒ iii) Let A be as given, C ′ = C and g = 0. In part (II), if |Ψ| > 1, then

the case (b) in (ii) can not happen, and this is the claim.

(iii⇒ ii) Clear.

(ii ⇒ i) It only remains to show that ExtR(C,A) is κ-full when A is not divisible

by only one prime element q of R: For f , 0 the parts (a) and (c) in Theorem are

trivially satisfied, then (b) is also satisfied, because fq , 0. �

Corollary 7.4 If (Ci | i ∈ I) is a nonempty family of torsion modules, where ExtR(Ci,A)

is κ-full for each i, then ExtR(
∐

Ci,A) is also κ-full.

Proof If at least one primary component of each Ci is zero, then all ExtR(Ci,A)’s

are zero, which implies that ExtR(
∐

Ci,A) is zero; however there is a j ∈ I where

Tp(C j) , 0 for all prime elements p of R, so the coneat homomorphism ε∗ :

ExtR(
∐

Ci,A) → ExtR(C j,A) yields the claim together with Lemma 6.4 and just

proven assertion of first Corollary. (Second Corollary is not true for arbitrary A

as it was shown at the remark to Lemma 5.2.) �

By our particular choice of A and C, C ′ one can answer the question of

Chapter 4, when g∗ : ExtR(C,A)→ ExtR(C ′,A) preserves the κ-elements.

Theorem 7.2 Let g : C ′ → C be given where C ′ is torsion, Tp(C) , 0 for all prime

elements p of R. Where Ω = {p is prime element of R | A is not p-divisible and gp , 0},
then

(I) If |Ω| = 1, then g∗ : ExtR(C,A)→ ExtR(C ′,A) preserves κ-elements if and only if

(a) Tp(C ′) , 0 for all prime elements p of R,

(b) A is not p-divisible and C ′ is p-divisible⇒ Ω = {p},

(c) for almost all prime elements p of R, tC ′
p (0) 6 hA

p (1).

(II) If |Ω| > 2, then g∗ : ExtR(C,A)→ ExtR(C ′,A) preserves κ-elements if and only if
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(a) Tp(C ′) , 0 for all prime elements p of R,

(b) A is not p-divisible and C ′ is p-divisible⇒ gp is surjective,

(c) for almost all prime elements p of R, tC ′
p (0) 6 hA

p (1) or g is p-coneat.

Proof The case Ω = ∅ indicates that g∗ = 0 which is not interesting; however

if Ω , ∅ and g∗ preserves κ-elements, then a nonzero κ-element lies in Im g∗ by

second Corollary to Theorem 7.1, so that Tp(C) , 0 for all prime elements p of R.

Further, we need the following remark:

If q ∈ Ω, g∗ preserves the κ-elements, and if p is prime element of R where A is not

p-divisible, C ′ is divisible and p , q, then gp must be surjective.

Namely, the condition Coker gp , gives fp : Tp(C) → Tp(K/A) where fp , 0; in

addition one can choose fq : Tq(C)→ Tq(K/A) where fqgq , 0, and if one specifies

f in such a way that it is coneat in all different primary components, then f is a

κ-element, thus also f g is a κ-element, in particular ( f g)p , 0 which is not true.

Case I. If the three conditions are all satisfied, then one knows by Lemma

7.2 that Im g∗ consists only of κ-elements. Conversely, if g∗ preserves κ-elements,

then (a) and (b) are clear by the above remark. For (c) one can choose a function

f : C→ K/A such that fqgq , 0 where q is the only element of Ω, and fp is coneat

for all p , q. Then since f is a κ-element, so f g , 0 is, in particular, tp( fpgp) 6 hA
p (1)

for almost all prime elements p of R. But now fpgp = 0 for all f , g, so that (c)

follows.

Case II. Suppose three conditions are all satisfied. Let f : C → K/A be a

κ-element where f g , 0 (otherwise the proof is done): In view of Theorem 7.1, if

A is not p-divisible and C ′ is p-divisible, then by assumption gp is surjective, C is

p-divisible, fp is surjective, f g , 0. Besides, there is n > 1 where p - n and A is not

p-divisible⇒ tp( f ) 6 hA
p (1) and [tC ′

p (0) 6 hA
p (1) or g is p-coneat ], thus tp( f g) 6 hA

p (1).

Conversely, g∗ preserves κ-elements. Again by the remark above (a) is

clear, similarly (b) is clear, since Ω possesses at least two elements. For (c) choose

q ∈ Ω and fq : Tq(C)→ Tq(K/A) where fqgq , 0. If p , q and A is not p-divisible, by

Lemma 4.4 there is a homomorphism ϕp : Tp(C)→ Tp(K/A), for the ϕpgp is coneat

only when gp is coneat. So one can complete fq to any f in which for p , q and A

is not p-divisible, set fp = phϕp where h = hA
p (1). It follows with Theorem 7.1 that

f is a κ-element by assumption, we also have f g , 0, so that in particular, there
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exists n ∈ R where p - n and A is not p-divisible⇒ p , q and tp( f g) 6 hA
p (1), thus

tp(phϕpgp) 6 h, by Lemma 6.3 therefore tC ′
p (0) 6 h or ϕpgp is coneat; in the second

case it follows that gp is coneat by the choice of ϕp. �

Since p-depth of the zero elements are always greater than or equal to units, in

the particular case A = R we obtain several simple descriptions, namely:

Corollary 7.5 Let g : C ′ → C where C ′ is torsion, and Tp(C) , 0 for all prime elements

p of R. Then the following are equivalent:

(i) g∗ : ExtR(C,R)→ ExtR(C ′,R) preserves κ-elements.

(ii) If g , 0, then

(a) C ′ is p-divisible⇒ gp is surjective,

(b) gp is p-coneat for almost all prime elements p of R.

The following theorem shows why the investigation of the κ-elements in Ext the

height concept was brought into focus. We want to put the arguments in an earlier

lemma together which are necessary in each primary component of C.

Lemma 7.3 Let M be a p-module, ϕ ∈ Hom(M,R(p∞)) and n > 0. Then the following

are equivalent:

(i) tp(ϕ |V) 6 n for all V ⊂M that have a direct supplement under Kerϕ.

(ii) hp(ϕ) 6 n.

(iii) hp(ϕ |V) 6 n for all V ⊂M with the following property:

V ⊂ X ⊂M and X/V is cyclic⇒ V ⊕U = X where U ⊂ Kerϕ. (*)

Proof We constantly use the characterization of height and depth from Theorem

6.2.

(i⇒ ii) If hp(ϕ) 
 n, then M[pn+1] ⊂ Kerϕ, hence one can choose a supplement V

of M[pn+1] in M that satisfies the assumption (i) by Lemma 6.1. From tp(ϕ |V) 6 n,

since V[pn+1] is small in V and hence tV
p (0) > n+2, also hp(ϕ |V) 6 n, in fact hp(ϕ) 6 n

which is not possible.

(ii⇒ iii) Let V possess the property (*). Assume that hp(ϕ |V) � n, then V[pn+1] ⊂
Kerϕ, thus (*) contradicts with M[pn+1] ⊂ Kerϕ, because for w ∈ M[pn+1] there is
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a decomposition V ⊕U = V + Rw where U ⊂ Kerϕ, hence w ∈ V[pn+1]⊕U[pn+1] ⊂
Kerϕ.

(iii ⇒ i) If V has a direct supplement under Kerϕ, then it certainly satisfies the

condition (*). �

Theorem 7.3 Let (�) be given. Then the following are equivalent:

(i) Imα has a direct supplement in every intermediate module.

(ii) Imα has a pure supplement in every intermediate module.

(iii) If f , 0, then

(a) fp , 0 for all prime elements p of R,

(b) hHom
p ( f ) 6 hA

p (1) for almost all prime elements p of R.

Proof By a direct (resp. pure) intermediate module we understand an X where

Imα ⊂ X ⊂ B and X ⊂⊕ B (resp. X is pure in B). One can easily describe C:

For L ⊂ C, β−1(L) ⊂⊕ B is equivalent to the fact that L has a direct supplement in

Ker f . Clearly, it follows from β−1(L) ⊕ V = B that L ⊕ β(V) = C, and V ⊂ T(B),

β(V) ⊂ Ker f . Conversely, if one has L ⊕ K = C where K ⊂ Ker f , then by the first

we get β−1(L)/ Imα ⊕ β−1(K)/ Imα = B/ Imα, by the second, β−1(K) ⊂ Imα + T(B),

and Imα ⊂⊕ β−1(K), thus together β−1(L) ⊂⊕ B. Correspondingly, it can be shown

that β−1(L) is pure in B if and only if there is a decomposition L ⊕ K = N with

K ⊂ Ker f for all L ⊂ N ⊂ C where N/L is cyclic.

(i ⇒ iii) Let f , 0. (a) If there is a prime element q of R with fq = 0, then

L =
⊕

p,q Tp(C) would have a direct supplement under Ker f , and it follows that

β−1(L) ⊂⊕ B, Imα ⊂κ β−1(L); since the q-components are missing in β−1(L)/ Imα,

it implies that Imα ⊂⊕ β−1(L), f = 0 contrary to the assumption. To prove (b),

let P = {p is prime element of R | hp( f ) 
 hA
p (1)}. If P = ∅ it is done, otherwise

by the lemma for each p ∈ P there is a submodule Lp ⊂ Tp(C) which has a direct

supplement under Ker fp and we get tp( fp |Lp) 
 hA
p (1). Now for L ⊂ C we define

Tp(L) = Lp if p ∈ P, and Tp(L) = Tp(C) if p < P, then L has a direct supplement

under Ker f , and it follows that β−1(L) ⊂⊕ B, Imα ⊂κ β−1(L), however the latter

does not split. By Theorem 7.1 it follows that tp( f |L6 hA
p (1) for almost all prime

elements p of R, so that P must be finite.
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(iii⇒ ii) Assume Imα is not a direct summand in B, and X is a pure intermediate

module. Then for all prime elements p of R, the condition (*) satisfies the inclusion

Tp(βX) ⊂ Tp(C) the lemma, so that hp( f |βX) is finite for all prime elements p of R,

and for almost all p smaller than or equal to hA
p (1), thus f |βX is a κ-element, i.e.

Imα ⊂κ X. �

Corollary 7.6 If Tp(C) , 0 for all prime elements p of R and A $ K, then the following

are equivalent:

(i) If 0 // A α // B
β // C // 0 is κ exact, then Imα has a supplement in every

direct intermediate module.

(ii) A is coatomic and C is divisible.

Proof (i⇒ ii) Since ExtR(C,A) is not zero, it has a nonzero κ-element by second

corollary to Theorem 7.1 such that Tp(K/A) , 0 for all prime elements p of R, thus

A is coatomic. Let q be a prime element of R where C is not q-divisible: Choose

f : C → K/A such that fq , 0 and fp is coneat for all p , q. Then 0 , f is a

κ-element, thus by assumption fp , 0 for all p contrary to our choice of f .

(ii⇒ i) If V is a supplement of Imα in B, then V = C(B) from our assumption. But

then every direct intermediate module X, D(X) is a supplement of Imα in X. �

Remark 7.3 If Imα also has a supplement in each coclosed intermediate module, then

Imα is a direct summand or small in B.

Remark 7.4 If Imα itself is small in B, then T(B) ⊂⊕ B does not need to hold: For each

prime element p of R one can choose a homomorphism fp : R/(p3) × R/(p)→ R(p∞) such

that Ker fp is certainly coclosed, but not a direct summand. The direct summand on p

yields f : C → K/R where C is supplemented and reduced, f is coneat. If one forms the

corresponding diagram (�) with A = R, then v and β are small epimorphisms; however

T(B) ⊂⊕ B, so Ker f ⊂β C must hold by Lemma 3.3 thus Ker fp ⊂⊕ Tp(C) for almost all

p, contrary to our choice of f .

The criterion Lemma 3.3 for the decomposition of B allows to alter our situation

(�); it yields a remarkable connection with the supplement concept:
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Theorem 7.4 Let (�) be given. T(B) ⊂⊕ B if and only if there is a supplement L of Ker f

in C where L(Tp(L ∩ Ker f )) 6 hA
p (1).

Proof We want to use the criterion of Meggiben (Meggiben 1967) (p.142) and

must calculate the height-matrix of α(1) in B:

(I) pnα(1) ∈ pm(B) ⇔ m − L( f (C[pm])) 6 n + hA
p (1). For the proof one can

assume that A is not p-divisible, thus h = hA
p (1) can be assumed finite. The

statement is true for n > m, so let n < m. Obviously, pnα ∈ pmB is equivalent to

the statement v(1/pm−n) ∈ f (C[pm]) and since Rv(1/pi) is always a cyclic p-module

of length max(0, i − h), here with i = m − n, the left side of (I) is equivalent to

max(0,m − n − h) 6 L( f (C[pm])), and that is the claim.

(II) If Tp(C) is indecomposable, fp , 0, e = L(Ker fp) and h = HA
p (1), thus we

have:

hB
p (pnα(1)) = n + h, e > n + h

= n + h + l − e, i f e 6 n + h,Tp(C) � R/(pl)

= ∞, e 6 n + h,Tp(C) � R/(p∞).

For the proof we will first consider the case Tp(C) � R/(p∞): Then fp = pegp where

gp is an isomorphism, thus L( f (C[pm])) = L(pe(R(pm))) = max(0,m − e), therefore

m − L( f (C[pm])) = min(e,m), and hence with (I) the claim follows. If however

Tp(C) � R(pl), then e < l and fp = pegp, where gp is a monomorphism, thus

f ([pm]) � pe(C[pm]). Since C[pm] is a cyclic p-module of length min(m, l), we have

L( f (C[pm])) = min(max(0,m−e), l−e), thus m−L( f (C[pm])) = max(min(e,m),m− l+

e). With (I) we get pnα(1) ∈ pmB if and only if min(e,m) 6 n + h and m 6 n + h + l− e,

again the claim follows.

(III) If H is the height-matrix of α(1) in B, Tp(C) is indecomposable and

fp , 0, then at most p-row of H has a gap, and it is gap-free if and only if

L(Ker fp) 6 hA
p (1).

For the notion of height-matrix see (Fuchs 1973) (p.197). Since Tp(B) is

either zero or indecomposable, for each x ∈ B the p-height coincides with the

so-called generalized p-height, and our claim follows immediately from (II).

(IV) The theorem is true if in particular each primary component of C is

zero or indecomposable.
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For the proof we first consider the excluded case in (III): If A is p-divisible,

then hB
p (pnα(1)) = ∞ for all n, but if A is not p-divisible and fp = 0, then it follows

from (I) that hB
p (pnα(1)) = n + hA

p (1) for all n. At most for such a prime element

p of R where fp , 0 the p-row of H has a gap. By (Meggiben 1967) TB ⊂⊕ B is

equivalent with that almost all rows ofH are gap-free, i.e. there is n ∈ R such that

p - n and fp , 0 ⇒ L(Ker fp) 6 hA
p (1). For the unique supplement L of Ker f in C

this is just the claim of the theorem.

(V) Let C be arbitrary. If L is as given, then all of the primary components

of L are zero or indecomposable, and we have L(Ker gp) 6 hA
p (1) for almost all p

where g = f |L. It follows now from (IV) that V ⊕T(β−1(L)) = β−1(L), together with

β−1(L) + T(B) = B thus it follows at once that V ⊕ T(B) = B. Conversely, from any

decomposition V ⊕ T(B) = B it follows that every primary component is zero or

indecomposable in β(V). In the induced diagram

0 // A // V + Imα //

²²

β(V) //

²²

0

0 // A ⊂ K ν
// K/A // 0

again V⊕T(V + Imα) = V + Imα, so by (IV) there is a supplement L of β(V)∩Ker f

in β(V) where L(Tp(L ∩ Ker f )) 6 hA
p (1) for almost all prime elements p of R. Since

β(V) + Ker f = C but L is also a supplement of Ker f in C, and the claim follows. �
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CHAPTER 8

ON THE TRANSITIVITY OF THE RELATION κ;

WEAK SUPPLEMENTS

If U ⊂κ M and Y is an intermediate module which is a direct summand,

then U ⊂ Y ⊂⊕ M, so U does not need to have any supplement in Y by Theorem

7.3. However, if V is a supplement of U in M, then one can obtain with V1 = V∩Y

at least V1 + U = Y, and V1 ∩U is small in Y : We call V1 a weak supplement of U in

Y. Further, conversely, it follows that:

Lemma 8.1 If X ⊂ Y and X has a weak supplement in Y, then there is a splitting

extension Y ⊂⊕ Z where X ⊂κ Z.

Proof Let V + X = Y where V ∩ X is small in Y. To the monomorphism

d : Y 3 y 7→ (y, y) ∈ Y × (Y/V) as we know there is an extension Y ⊂ Z and an

isomorphism χ : X × (Y/V)→ Z where χd = Y ⊂ Z. It is clear that Y ⊂⊕ Z and by

means of the canonical isomorphism ϕ : Y × (X/V ∩ X)→ Y × (Y/V) one can also

obtain that χϕ(Y × 0) is a supplement of X in Z. �

We want to show in the following for particular sequence

0 // A α // B
β // C // 0 that Imα has a weak supplement in B if

and only if there is an intermediate module X where Imα ⊂κ X and X ⊂κ B and

hence deduce an example showing that the relation κ is not transitive.

Lemma 8.2 Let (�) be given as in Chapter 7. Then the following are equivalent:

(i) Imα has a weak supplement in B.

(ii) If Imα is not a direct summand in B, then α(1) ∈ pB for almost all prime elements

p of R.

(iii) If f , 0, then hA
p (1) > 0 or f is p-coneat for almost all p.

Proof (i⇒ ii) If V + Imα = B where V ∩ Imα is small in B, then V ∩ Imα , 0

since Imα does not split, thus α(a) ∈ Rad(B) for some element 0 , a ∈ A, therefore
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α(n) ∈ Rad(B) for some element 0 , n ∈N, thus α(1) ∈ pB for all p - n.

(ii ⇒ i) If Imα splits, there is nothing to show; other cases follow from the

assumption that U is small in B for some 0 , U ⊂ Imα. Since Imα/U is artinian

in each primary component, it has a supplement in torsion B/U, we denote it by

V/U, and it follows that V ∩ Imα is small in B such that V is a weak supplement

of Imα in B since (V ∩ Imα)/U is small in B/U.

(ii ⇔ iii) Obviously, α(1) ∈ pB is equivalent with that ν(1/p) = f (c) for some

c ∈ C[p] thus equivalent to ν(1/p) ∈ f (C[p]). Since ν(1/p) , 0 ⇔ hA
p (1) = 0 the

claim follows. �

Theorem 8.1 Let (�) be given as in Chapter 7. Then the following are equivalent:

(i) There is an intermediate module X where Imα ⊂κ X and X ⊂κ B.

(ii) There is an intermediate module Y where Imα ⊂κ Y and Y + T(B) = B.

(iii) If f , 0, then Tp(C) , 0 for all prime elements p of R, and hA
p (1) = 0 for almost all

prime elements p of R or [Tp(C) is indecomposable and fp , 0]⇒ tHom
p ( f ) 6 hA

p (1).

Proof (i⇒ ii) More generally we show that if

Imα ⊂ X ⊂κ B and X + T(B) $ B,

then Imα ⊂κ B (thus in this case choose Y = B, otherwise Y = X). Namely, if W is a

supplement of X in B, then it is also a supplement of Imα in Imα+W; on the other

hand Imα can not be a direct summand in Imα, because from Imα⊕S = Imα+W it

would follow that S is torsion, X+S = B, X+T(B) = B contrary to our assumption.

Thus the sequence

0 // A α // Imα + W
β // β(W) // 0

is κ-exact and does not split, i.e. ι∗([E]) is a nonzero κ-element of ExtR(β(W),A).

While on the contrary ι : β(W) ⊂ C is a neat-homomorphism since β(W) is a

supplement of β(X) in C, so that ι∗ is coneat by Lemma 4.4, 4 and does no make

the depth smaller by Lemma 6.4. It follows that Tp(C) , 0 for all prime elements

p of R, and

c` tExtR(C,A)([E]) 6 τ(A)
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as assumed.

(ii ⇒ iii) Let f , 0. Then Imα can not be direct summand in Y, since from

Imα ⊕ S = Y, it would follow that S is torsion, Imα ⊕ T(B) = B which was

excluded. In particular, if Tp(C) , 0 for all prime elements p of R, and for L = β(Y)

we get L + Ker f = C, tp( f |L) 6 hA
p (1) for almost all prime elements p of R; but then

tp 6 hA
p (1) must hold in the given particular cases.

(iii ⇒ i) To construct X we need the case that Tp(C) is nontrivial decomposable

and hA
p (1) < ∞. �

Lemma 8.3 Let M be a p-module with a nontrivial decompositionϕ ∈ (M,R(p∞)). Then

there is a submodule V of M with

(1) V + Kerϕ = M,

(2) V ∩ Kerϕ ⊂κ Kerϕ,

(3) V[p] 1 pV (in particular tp(ϕ |V) 6 1).

Proof Case 1. Kerϕ ⊂κ M. Then if X is a supplement of Kerϕ in M, then it

follows from the structure of X and assumption on M that X is not essential in M,

thus X ∩ E = 0 for some simple E ⊂M. So V = X + E gives the desired result.

Case 2. Kerϕ has no supplement in M. Then it follows that D(M) ⊂ Kerϕ,

since the existence of an X ⊂ M where X � R(p∞), X < Kerϕ would involve

0 , (X + Kerϕ)/Kerϕ ⊂M/Kerϕ, such that X would be a supplement of Kerϕ in

M, which was excluded. Further, it follows that M/D(M) can not be supplemented,

thus a decomposition M = G ⊕ H exists where H is finitely generated, and not

cyclic. Now one can use case 1. on H and ϕ |H, thus H1 + (H ∩ Kerϕ) = H where

E ⊂⊕ H1, and E is simple. For V = G + H1 we have V + Kerϕ = M as well as

E ⊂⊕ V, and M/V is finitely generated as factor of H, it also has a supplement

V ∩ Kerϕ in Kerϕ.
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For proof of (iii⇒ i) in the theorem let f , 0. Now define L ⊂ C by,

Tp(L) = simple fp = 0,

= Tp(C) if fp , 0 and



hA
p (1) = 0 or

Tp(C) is

indecomposable



=

with the three

properties of V

as in the lemma

fp , 0 and



hpA(1) , 0 and

Tp(C) is nontrivial

decomposable


.

Then this L satisfies the following five conditions:

(1) L + Ker f = C;

(2) L ∩ Ker f ⊂κ Ker f ;

(3) Tp(L) , 0 for all prime elements p of R;

(4) ( f |L)p = 0⇒ Tp(L) is simple;

(5) tp( f |L) 6 hA
p (1) for almost all prime elements p of R.

In order to produce the desired X = β−1(L), since (3-5) warranted that

Imα ⊂κ X, from (1) it follows that X + T(B) = B such that there is still to show

X ∩ T(B) ⊂κ T(B), and it follows from (2) via the induced isomorphism T(B) →
Ker f of β, X ∩ T(B) is precisely mapped on L ∩ Ker f . �

Corollary 8.1 If one has Imα ⊂κ X0 ⊂κ X1 ⊂ · · · ⊂κ Xn = B where n > 2, then there is

an intermediate module X where Imα ⊂κ X ⊂κ B.

Proof If X0 + T(X1) $ X1 or X1 + T(X2) $ X2, one has Imα ⊂κ X ⊂κ X2 by the

step (i⇒ ii), but if two cases are equalities, we have X0 + T(X2) = X2, we can find

such an X by the step (ii⇒ i). �

Corollary 8.2 If A = R and Tp(C) , 0 for all prime elements p of R, then Imα has a weak

supplement in B if and only if there is an intermediate module X with Imα ⊂κ X ⊂κ B.

Proof If f , 0, two assertions are equivalent to the statement that f is p-coneat

for almost all prime elements p of R. �

Now one can immediately find an example that the relation κ is not transitive: We

define E = 0 // R α // B
β // K/R // 0 via f ∈ Hom(K/R,K/R) with fq = 0,

fp isomorphism for all p , q so Imα has a weak supplement in B, but does not
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have a supplement in B. On the other hand, one can give simple conditions that

for the extensions of A by C this distinction does not exist.

Theorem 8.2 Let (�) be given as in Chapter 7 and Tp(C) , 0 for all prime elements p of

R. Then the following are equivalent for the pair (A,C):

(i) If the sequence 0 // A α // B
β // C // 0 is exact and Imα has a weak

supplement in B, then Imα ⊂κ B.

(ii) If the sequence 0 // A α // B
β // C // 0 is exact and there is an interme-

diate module X where Imα ⊂κ X ⊂κ B, then Imα ⊂κ B.

(iii) If A is not divisible by at least two prime elements of R, then

(a) A is not p-divisible⇒ C is not p-divisible,

(b) hA
p (1) = 0 or tC

p (0) 6 hA
p (1) for almost all prime elements p of R.

Proof (i⇒ ii) With the help of these X, we must only show that Imα has a weak

supplement in B: Let V be a supplement of Imα in X and W be a supplement of

X in B. If both V ∩ Imα = 0 and W ∩ Imα = 0, then both V and W are torsion,

thus (V + W) ⊕ Imα = B; but if both of them are nonzero, one has 0 , U ⊂ Imα

where U is small in B, and the claim follows as in Lemma 8.2.

(ii ⇒ iii) Let A be as required. (a) Assume that there is a prime element q of R

with A is not q-divisible but C is q-divisible: One can choose f : C → K/A such

that fq = 0 and fp is coneat for all p , q, so f , 0, since still there is q ′ , q where

Tq ′(K/A) , 0; in addition, there is an intermediate module X where Imα ⊂κ X ⊂κ B

by Theorem 8.1, however Imα does not have a supplement in B. This contradicts

with the assumption.

(b) One can choose a fixed q with A is not q-divisible, and in addition f : C→ K/A

such that fp = 0 if p , q and hA
p (1) , 0, and that fp is coneat in all other cases.

Again f , 0, and Imα possesses an “intermediate supplement”. By assumption

it follows that Imα ⊂κ B, in particular, there is n ∈ R where tC
p (0) 6 hA

p (1) for all

prime elements p of R with p - n. For p - n, p , q and hA
p (1) < {0,∞} is satisfied, f

is as we have selected, tC
p (0) 6 hA

p (1), and this is the claim.

(iii ⇒ i) Let Imα have a weak supplement in B, and f be the homomorphism

belonging to the sequence (�).
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Case 1. f = 0 or A is not divisible by any prime element of R. In two cases we

have Imα ⊂κ B (see Lemma 7.2).

Case 2. f , 0 and A is not divisible by at least two prime elements of R. By Lemma

8.2 and our assumption (b), there is n > 1 such that: p - n and hA
p (1) = 0⇒ tp( f ) = 0,

p - n and hA
p (1) , 0⇒ tp( f ) 6 hA

p (1). Thus, since tp( f ) 6 hA
p (1) for almost all prime

elements p of R, it follows with (a) that f is κ-element. �

However under different additional conditions, the relation κ is transitive, and

we want to give two such conditions to finish:

Lemma 8.4 Let X ⊂κ Y ⊂κ Z, and V be a supplement of X in Y, W be a supplement of

Y in Z. Then

(a) If Rad(Y/X) = Y/X ∩ Rad(Z/X), then V + W is a supplement of X in Z.

(b) If V is torsion, then X ⊂κ Z.

Proof (a) From the characterization of the radical, it follows that (X + (W ∩
Y))/X = ((W + X) ∩ Y)/X is small not only in Z/X, but also in Y/X, thus the

canonical map V → Y/X → Z/W + X is an essential epimorphism, i.e. V is a

supplement of W + X in Z. Of course W is also a supplement of V + X in Z, and

both together provide the assertion.

(b) The coatomic module ((W + X) ∩ Y)/X has a supplement Y ′/X in the torsion

module Y/X such that (W + X)/X and Y ′/X are mutual supplement in Z/X. Since

Y ′ ⊂κ Z and Rad(Y ′/X) = Y ′/X∩Rad(Z/X) and since (V∩Y ′) + X = Y ′ it follows

the equivalent argument that X ⊂κ Y ′, thus X ⊂κ Z. �
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CHAPTER 9

CONCLUSION

In this thesis we applied homological methods for description of the sub-

modules of modules over a principal ideal domain that have supplements. The

corresponding elements in the module of extensions are called κ-elements. These

elements for the case of abelian groups were studied in (Zöschinger 1978). We

generalized the results from (Zöschinger 1978) to modules over principal ideal

domains. The κ-elements in general need not form a submodule in the exten-

sion module ExtR(C,A) but if C is divisible and almost all primary components

of C are zero, they coincide with torsion elements of ExtR(C,A). We have also

investigated β-elements which form a submodule of ExtR(C,A) and their relation

with κ-elements. It is interesting which of these properties hold in more general

situation e.g. for modules over discrete valuation domains, Dedekind domains

and Prüfer domains.
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