Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/3825
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAlizade, Rafael-
dc.contributor.authorTop, Serpil-
dc.date.accessioned2014-07-22T13:52:27Z
dc.date.available2014-07-22T13:52:27Z
dc.date.issued2007-
dc.identifier.urihttp://hdl.handle.net/11147/3825-
dc.descriptionThesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2007en_US
dc.descriptionIncludes bibliographical references (leaves: 54-55)en_US
dc.descriptionText in English; Abstract: Turkish and Englishen_US
dc.descriptionvii, 55 leavesen_US
dc.description.abstractThe main purpose of this thesis is to give a survey about some classes of modules including supplemented, weakly supplemented, totally supplemented and totally weak supplemented modules over commutative Noetherian rings, in particular over Dedekind domains based on results of H. Zöschinger, P. Rudlof and P. F. Smith. A module is weakly supplemented if and only if the factor of that module by a finite direct sum of its hollow submodules is weakly supplemented. A module is weakly supplemented (totally weak supplemented) if and only if the factor of it by a linearly compact submodule is weakly supplemented (totally weak supplemented).en_US
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen_US
dc.publisherIzmir Institute of Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.lccQA247. T67 2007en
dc.subject.lcshModules (Algebra)en
dc.subject.lcshRings (Algebra)en
dc.subject.lcshNoetherian ringsen
dc.subject.lcshDedekind ringsen
dc.titleTotally Weak Supplemented Modulesen_US
dc.typeMaster Thesisen_US
dc.institutionauthorTop, Serpil-
dc.departmentThesis (Master)--İzmir Institute of Technology, Mathematicsen_US
dc.relation.publicationcategoryTezen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.openairetypeMaster Thesis-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
T000660.pdfMasterThesis264.76 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

132
checked on Dec 23, 2024

Download(s)

102
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.