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ABSTRACT

TOTALLY WEAK SUPPLEMENTED MODULES

The main purpose of this thesis is to give a survey about some classes of

modules including supplemented, weakly supplemented, totally supplemented

and totally weak supplemented modules over commutative Noetherian rings, in

particular over Dedekind domains based on results of H. Zöschinger, P. Rudlof

and P. F. Smith. A module is weakly supplemented if and only if the factor of that

module by a finite direct sum of its hollow submodules is weakly supplemented.

A module is weakly supplemented (totally weak supplemented) if and only if

the factor of it by a linearly compact submodule is weakly supplemented (totally

weak supplemented).
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ÖZET

TÜMDEN ZAYIF TÜMLENMİŞ MODÜLLER

Bu tezde temel olarak H. Zöschinger, P. Rudlof ve P. F. Smith’in sonuçlarına

dayanan değişmeli Noether halkaları, özel olarak Dedekind tamlık bölgeleri

üzerinde tümlenmiş, zayıf tümlenmiş, tümden tümlenmiş ve tümden zayıf

tümlenmiş modülleri içeren bazı modül sınıf ları üzerine inceleme yapılması

amaçlanmıştır. Bir modülün zayıf tümlenmiş olması için gerek ve yeter koşul o

modülün oyuk altmodüllerinin sonlu dik toplamına göre bölüm modülünün zayıf

tümlenmiş olmasıdır. Bir modülün zayıf tümlenmiş (tümden zayıf tümlenmiş)

olması için gerek ve yeter koşul o modülün lineer kompakt bir altmodülüne göre

bölüm modülünün zayıf tümlenmiş (tümden zayıf tümlenmiş) olmasıdır.
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CHAPTER 1

INTRODUCTION

Supplement submodules and some generalizations were intensively in-

vestigated in 1970’s mainly by H. Zöschinger. During the past ten years there

has been an extensive research in this topic. The main results on this topic are

published in monografs (Wisbauer 1991, Clark et al. 2006).

In this thesis, we study the classes of supplemented modules, weakly

supplemented modules, totally supplemented modules and totally weak sup-

plemented modules. We consider these modules over commutative Noetherian

rings, in particular over Dedekind domains.

In Chapter 2, we introduce our basic terminology for rings and modules, as

well as the fundamental results to be used in this thesis. Moreover we investigate

some well known results about supplements and supplemented modules. If

every submodule U of a module M has a supplement V in M, i.e. V is minimal

with respect to M = U + V then M is said to be supplemented. A submodule of a

supplemented module need not be supplemented (Zöschinger 1974a). However,

a supplemented module M over a commutative Noetherian ring is characterized

in terms of a supplemented submodule U and supplemented factor module M/U

such that M/U is reduced (Rudlof 1991). At the end of this chapter, we give a

general view about the relations between supplemented, weakly supplemented,

totally supplemented and totally weak supplemented modules by a diagram.

In Chapter 3, we deal with weakly supplemented modules. If every sub-

module U of M has a weak supplement, i.e. M = U +V and U ∩V �M for some

submodule V of M, then M is called weakly supplemented. The main result of

Chapter 3 characterizes the weakly supplemented modules in terms of a finite

direct sum of hollow submodules and factor modules by them over arbitrary

rings. Consequently, weakly supplemented modules have a characterization in

terms of a finite direct sum of local submodules and factor modules by them

over arbitrary rings. Particularly, a module M is weakly supplemented if and
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only if M/ Soc M is weakly supplemented for finitely generated Soc M. Finally, in

this chapter we study characterizations of weakly supplemented modules over

Dedekind domains.

In Chapter 4, we study the main results about totally supplemented mod-

ules. In general, the finite sum of totally supplemented modules need not be

totally supplemented but a module M is totally supplemented if and only if

M is the direct sum of a semisimple module and a totally supplemented mod-

ule (Smith 2000). We have improved the characterization about supplemented

modules (which is given in Chapter 2) for totally supplemented modules and

investigated its consequences in this chapter. A supplemented module M over a

commutative Noetherian ring is characterized in terms of a supplemented sub-

module U and supplemented factor module M/U such that U is semi-Artinian

(Rudlof 1991). As a result of that characterization, M is totally supplemented if

and only if M/ Soc M is totally supplemented. We show that a module M over a

Discrete Valuation Ring (DVR) is totally supplemented if and only if Rad(M) is to-

tally supplemented. In addition, a module M over a DVR is totally supplemented

if and only if T(M) and M/T(M) are totally supplemented.

In Chapter 5, we deal with totally weak supplemented modules. For an

R-module M, M is supplemented (totally supplemented) if and only if M/K is

supplemented (totally supplemented) for a linearly compact submodule K of M

(Smith 2000). We have improved this characterization for weakly supplemented

(totally weak supplemented) modules in this chapter. A module M is weakly

supplemented (totally weak supplemented) if and only if M/K is weakly sup-

plemented (totally weak supplemented) for a linearly compact submodule K of

M. Similarly, a module M is weakly supplemented (totally weak supplemented)

if and only if M/U is weakly supplemented (totally weak supplemented) for a

uniserial submodule U of M. We also show that a module M over a semilocal

Dedekind domain is totally weak supplemented if and only if T(M) and M/T(M)

are totally weak supplemented. Finally, we study the results on the relations

between supplemented, weakly supplemented, totally supplemented and totally

weak supplemented modules in this chapter.
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CHAPTER 2

PRELIMINARIES

2.1. Isomorphism Theorems

Definition 2.1 Let R be a ring with identity 1, M be an abelian group and

f : R × M −→ M, ( f (r,m) = rm) be a function where r ∈ R, m ∈ M. Then M is

called a left R-module (or a module in brief ) if the following are satisfied:

(i) r(m + n) = rm + rn for every r ∈ R and m,n ∈M.

(ii) (r + s)m = rm + sm for every r, s ∈ R and m ∈M.

(iii) (rs)m = r(sm) for every r, s ∈ R and m ∈M.

(iv) 1.m = m for every m ∈M.

If the function f : M × R −→ M, ( f (m, r) = mr) with similar conditions are

given in Definition 2.1, then M is called a right R-module. If M is a left R-module,

right S-module and (rm)s = r(ms) for every r ∈ R, m ∈ M, s ∈ S then M is said to

be an R − S-module or bimodule.

Vector space is an example of module.

A subset N of an R-module M is called a submodule if N satisfies the

module conditions.

Throughout this thesis all rings are associative and have an identity. Unless

it is stated otherwise, the symbol R stands for a ring, and when R is a domain, Q

stands for its field of fractions.

Basic information about modules can be found in related references (Kasch

1982, Anderson and Fuller 1992, Alizade and Pancar 1999). Throughout this

study we will use the following definitions, theorems, lemmas and propositions.

Definition 2.2 Let M be an R-module and N be a submodule of M. The set of cosets

M/N = {x + N | x ∈ M} is a module relative to the addition and scalar multiplication

defined by (x + N) + (y + N) = (x + y) + N, r(x + N) = rx + N. The resulting module

M/N is called a factor module of M by N.
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Definition 2.3 If M and N are two modules, then a function f : M −→ N is a

homomorphism in case for all r, s ∈ R and all x, y ∈M

f (rx + sy) = r f (x) + s f (y).

If N =M, then the homomorphism f is called endomorphism.

Theorem 2.1 Let M be a module over a commutative ring R. The set of endomorphisms

of M is a ring with a unit element if addition and multiplication of endomorphisms are

defined as:

( f1 + f2)(m) = f1(m) + f2(m)

( f1 f2)(m) = f1( f2(m)).

Definition 2.4 The given ring in Theorem 2.1 is called endomorphism ring and denoted

by EndR(M).

Definition 2.5 A homomorphism f : M −→ N is called an epimorphism if it is onto. It

is called a monomorphism if it is one-to-one (injective).

Definition 2.6 Kernel of f : Ker f = {m ∈ M | f (m) = 0} ⊆ M. Image of f : Im f =

{ f (m) | m ∈M} ⊆ N.

Hence f is an epimorphism if and only if Im f = N, and f is an monomor-

phism if and only if Ker f = 0.

Definition 2.7 A homomorphism f is called an isomorphism if it is both an epimorphism

and a monomorphism (i.e. it is a bijection).

Definition 2.8 If K is a submodule of M, then the monomorphism iK : K −→ M is

called the inclusion map, in other words natural embedding of K in M. Then the mapping

σK : M −→ M/K from M onto the factor module M/K defined by σK(m) = m + K ∈

M/K, m ∈M is called the natural (canonical) epimorphism of M onto M/K. In this case,

Ker σK = K.

Definition 2.9 Let {Mi}i∈I be a family of left R-modules. The set M =
∏
i∈I

Mi with

operations (xi)I + (yi)I = (xi + yi)I and r(xi)I = (rxi)I where xi, yi ∈Mi, r ∈ R is called the

cartesian product or direct product of the family {Mi}i∈I. The subset
⊕
i∈I

Mi = {(xi)i∈I ∈∏
i∈I

Mi | xi = 0 f or all but f inite i ∈ I} of
∏
i∈I

Mi is a submodule and it is called external

direct sum of the family {Mi}i∈I.
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Definition 2.10 Let M be an R-module and {Ni | i ∈ I} be the set of submodules of M.

M =
⊕
i∈I

Ni is called internal direct sum (or direct sum) if the following conditions hold:

1. M =
∑
i∈I

Ni

2. For every j ∈ I, N j ∩
∑
i, j

Ni = 0

Then M =
⊕
i∈I

Ni is also said to be a decomposition of M.

Definition 2.11 Let M be an R-module.

1. A submodule A is called direct summand of M if M = A ⊕ B for some submodule

B ⊆M.

2. M is called indecomposable if M , 0 and it can not be written as a direct sum of

non-zero submodules.

Theorem 2.2 Fundamental Homomorphism Theorem

Let M and N be left R-modules and f : M −→ N be a homomorphism, then

M/Ker f � Im f .

If f is an epimorphism, then M/Ker f � N.

Theorem 2.3 Second Isomorphism Theorem

If N and K are submodules of M, then

(N + K)/K � N/(N ∩ K).

Theorem 2.4 Third Isomorphism Theorem

If K ⊆ N ⊆M, then

(M/K)/(N/K) �M/N.

Definition 2.12 A sequence

S : . . . −→Mn+1
fn+1
−→Mn

fn
−→Mn−1 −→ . . .

of modules {Mn}n∈Z and homomorphisms { fn}n∈Z is exact if Im fn+1 = Ker fn for each

n ∈ Z.

Proposition 2.1 If the sequence 0
f
−→A

g
−→B h

−→C e
−→0 is exact, then g is a monomor-

phism and h is an epimorphism, so Im g � A and C � B/ Im g. Thus we can say

C � B/A.
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Definition 2.13 The exact sequence 0 −→ A −→ B −→ C −→ 0 is called a short exact

sequence.

Theorem 2.5 For a short exact sequence

0 −→ A
f
−→ B

g
−→ C −→ 0

the following are equivalent:

1. There exists a homomorphism h : B −→ A such that h ◦ f = 1A

2. Im f is a direct summand of B, i.e. B = Im f ⊕ T where T � C

3. There exists a homomorphism k : C −→ B such that g ◦ k = 1C.

Definition 2.14 If any of these conditions of Theorem 2.5 is satisfied, then the short

exact sequence

0 −→ A −→ B −→ C −→ 0

is called a splitting short exact sequence.

Definition 2.15 Let M, N and P be R-modules. P is projective if for every epimorphism

M
f
−→ N −→ 0 and homomorphism g : P −→ N there is a homomorphism h : P −→ M

such that f ◦ h = g. This can be shown by the following commutative diagram.

P
g

��

h

~~
M f

// N // 0

Definition 2.16 Let I, M and N be R-modules. I is injective if for every monomorphism

0 −→ M
f
−→ N and homomorphism g : M −→ I there is a homomorphism h : N −→ I

such that h ◦ f = g. This can be shown by the following commutative diagram.

0 // M
f //

g
��

// N

h
~~

I

Definition 2.17 Let M be an R-module. A submodule N is called cofinite if M/N is

finitely generated (Alizade et al. 2001).

Definition 2.18 Let M be an R-module. A submodule K of M is small (superfluous) in

M if for all proper submodules L of M, L + K ,M holds. Small submodule is denoted by

K �M and M is called a small cover of M/K.

6



Definition 2.19 Let M be an R-module. A submodule K of M is called a minimal

(simple), respectively a maximal submodule of M :⇔

0 , K ∧ ∀N ⊆M [N $ K⇒ N = 0]

resp.K ,M ∧ ∀N ⊆M [K $ N⇒ N =M]

Definition 2.20 Let R be a commutative ring. The Jacobson radical of R is the intersec-

tion of all the maximal ideals of R and the Jacobson radical is denoted by J(R).

Definition 2.21 Let M be an R-module. The radical of M is the sum of all small

submodules of M, equivalently intersection of all maximal submodules of M. The radical

of M is denoted by Rad(M).

Definition 2.22 Let (Tα)α∈A be an indexed set of simple (minimal) submodules of M. If

M is the direct sum of this set, then

M =
⊕

A
Tα

is a semisimple decomposition of M. A module M is called semisimple in case it has a

semisimple decomposition.

Definition 2.23 Let U be a class of modules. A module M is (finitely) generated by U

(or U (finitely) generates M) in case there is a (finite) indexed set (Uα)α∈A in U and an

epimorphism ⊕
A

Uα −→M −→ 0.

Definition 2.24 Let U be a class of modules. A module M is (finitely) cogenerated by U

(or U (finitely) cogenerates M) in case there is a (finite) indexed set (Uα)α∈A in U and a

monomorphism

0 −→M −→
∏
A

Uα.

Theorem 2.6 For an R-module M, the following statements are equivalent:

(a) M is semisimple;

(b) M is generated by simple modules;

(c) M is the sum of some set of simple modules;

(d) M is the sum of its simple submodules;
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(e) Every submodule of M is a direct summand;

(f) Every short exact sequence

0 −→ K −→M −→ N −→ 0

of R-modules splits (Anderson and Fuller 1992).

Definition 2.25 Let M be an R-module. A submodule K of M is said to be large or

essential if K ∩ L , 0 for every non-zero submodule L ⊆M and this denoted by K EM.

Definition 2.26 Let M be an R-module. The socle of M, denoted by Soc(M), is the sum

of all simple submodules of M, equivalently intersection of all essential submodules of M.

Remark 2.1 Note that Soc M is the largest semisimple submodule and M is semisimple

if and only if M = Soc(M).

Definition 2.27 Let M be an R-module. A pair (P, p) is a projective cover of M in case

P is a projective R-module and

P
p
−→M −→ 0

is a small epimorphism (Ker p� P).

Definition 2.28 Let M be an R-module. A pair (I, ε) is an injective hull of M in case I

is an injective R-module and

0 −→M ε
−→ I

is an essential monomorphism (Im ε E I).

Lemma 2.1 Let K, N, L be submodules of M and N ⊆ K then

K ∩ (N + L) = N + K ∩ L.

Proof (⊆) Let k ∈ K ∩ (N + L). Then k can be represented as k = n + l for some

n ∈ N, l ∈ L. Since N ⊆ K, n ∈ K we have l = k − n ∈ K + N ⊆ K + K = K. Hence

l ∈ K ∩ L and k = n + l ∈ N + K ∩ L.

(⊇) Obvious. �

8



Lemma 2.2 Let M be an R-module and K ⊆ L and Li (1 ≤ i ≤ n) be submodules of M

for some positive integer n. Then the following hold:

1. L�M if and only if K �M and L/K �M/K.

2. L1 + L2 + · · · + Ln �M if and only if Li �M (1 ≤ i ≤ n).

3. If M′ is an R-module and ϕ : M −→ M′ is a homomorphism, then ϕ(L) � M′

whenever L�M.

4. If L is a direct summand of M, then K � L if and only if K �M.

Proof 1. (⇒) Let K +N = M for some N ⊆ M. Since K ⊆ L we have L +N = M.

Thus N =M since L�M. Hence K �M.

Let L/K+T/K =M/K for some T ⊆M containing K. Then L+T =M. Since L�M

we have T =M and this implies that T/K =M/K. Thus L/K �M/K.

(⇐) Let L + N = M for some submodule N of M. Thus L/K + (N + K)/K = M/K.

Since L/K � M/K, (N + K)/K = M/K⇒ N + K = M. Since K � M, N = M. Hence

L�M.

2. (⇒) Let Li+N =M for some submodule N of M. For i , j ( j = 1, 2, . . . , n),

L1 + L2 + · · · + Li + · · · + Ln + N = M. By hypothesis, L1 + L2 + · · · + Ln � M, so

N =M, therefore Li �M.

(⇐) Let each Li �M and L1+L2+· · ·+Ln+N =M. Since L1 �M, L2+· · ·+Ln+N =M.

Then since L2 �M, L3+ · · ·+Ln+N =M. Continuing in this way N =M, therefore

L1 + L2 + · · · + Ln �M.

3. Let ϕ(L) + N = M′ for some submodules N ⊆ M′ and L ⊆ M. M =

ϕ−1(M′) = ϕ−1(ϕ(L)+N) = ϕ−1(ϕ(L))+ϕ−1(N) = (L+Kerϕ)+ϕ−1(N) = L+ϕ−1(N).

Since L � M, ϕ−1(N) = M. M′ = ϕ(L) + N ⊆ ϕ(M) + N = ϕ(ϕ−1(N)) + N ⊆ N ⇒

M′ = N. Hence ϕ(L)�M′.

4. (⇒) Let K + T = M for some submodule T of M. Then (K + T) ∩ L = L.

By Modular Law, K + (T ∩ L) = L. Since K � L, T ∩ L = L ⇒ L ⊆ T. Since K ⊆ L,

K ⊆ T, i.e. M = K + T = T⇒M = T⇒ K �M.

(⇐) Let K � M. Suppose L is a direct summand of M. There exists a submodule

N of M such that L +N = M and L ∩N = 0. Let K + T = L for some submodule T

of L. M = L + N = K + T + N. Since K � M, T + N = M. Then by Modular Law

L = (T +N) ∩ L = T +N ∩ L. Since N ∩ L = 0, L = T, therefore K � L. �

Definition 2.29 An R-module M is called Noetherian if every non-empty set of sub-
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modules of M has a maximal element. M is artinian if every non-empty set of submodules

has a minimal element.

Theorem 2.7 Let M be an R-module and A be a submodule of M. The following

properties are equivalent:

1. M is Noetherian.

2. A and M/A are Noetherian.

3. Every ascending chain A1 ⊂ A2 ⊂ A3 ⊂ · · · of submodules holds ascending chain

condition, i.e. every ascending chain of submodules of M is stationary.

4. Every submodule of M is finitely generated.

5. In every set {Ai | i ∈ I} , ∅ of submodules Ai ⊂ M there is a finite subset {Ai | i ∈ I0}

(i.e. finite I0 ⊂ I) with ∑
i∈I

Ai =
∑
i∈I0

Ai.

Theorem 2.8 Let M be an R-module and A be a submodule of M. The following

properties are equivalent:

1. M is artinian.

2. A and M/A are artinian.

3. Every descending chain A1 ⊃ A2 ⊃ A3 ⊃ · · · of submodules holds descending chain

condition, i.e. every descending chain of submodules of M is stationary.

4. Every factor module of M is finitely cogenerated.

5. In every set {Ai | i ∈ I} , ∅ of submodules Ai ⊂ M there is a finite subset {Ai | i ∈ I0}

(i.e. finite I0 ⊂ I) with ⋂
i∈I

Ai =
⋂
i∈I0

Ai.

Definition 2.30 A submodule N of M is called radical if Rad(N) = N.

Definition 2.31 For an R-module M, let P(M) =
∑
{N ⊆ M | Rad(N) = N}. The

module M is said to be reduced if P(M) = 0 equivalently, every non-zero submodule has

a maximal submodule.

Remark 2.2 Every submodule of a reduced module is reduced.

Definition 2.32 A module M is called coatomic if Rad(M)/U ,M/U for every proper

submodule U of M equivalently, every proper submodule of M is contained in a maximal

submodule of M.

10



Remark 2.3 Every factor module of a coatomic module is coatomic. Finitely generated

modules and semisimple modules are coatomic. Note that Rad(M) � M for every

coatomic module M.

Theorem 2.9 Let M be a coatomic module over a commutative Noetherian ring. Then

every submodule of M is coatomic (Zöschinger 1980).

2.2. Supplement

Definition 2.33 Let U be a submodule of an R-module M. If there exists a submodule

V of M minimal with respect to the property M = U + V, then V is called a supplement

of U in M.

Lemma 2.3 V is a supplement of U in M if and only if U + V =M and U ∩ V � V.

Proof (⇒) Let V be a supplement of U in M such that M = U + V. Suppose

(U ∩V) +X = V for some X ⊆ V, then M = U +V = U + (U ∩V) +X = U +X. By

minimality of V, X = V. Thus U ∩ V � V.

(⇐) Let M = U + V and U ∩ V � V. Suppose M = U + Y for some Y ⊆ V.

V = M ∩ V = (U + Y) ∩ V = (U ∩ V) + Y by Modular Law. Then Y = V since

U ∩ V � V. Hence V is a supplement of U in M. �

The following proposition gives some properties of supplement.

Proposition 2.2 Let U, V ⊆M and V be a supplement of U in M.

1. If W + V =M for some W ⊆ U, then V is a supplement of W.

2. If M is finitely generated, then V is also finitely generated.

3. If U is a maximal submodule of M, then V is cyclic and U ∩ V = Rad(V) is a (the

unique) maximal submodule of V.

4. If K �M then, V is a supplement of U + K.

5. If K �M, then V ∩ K � V and Rad(V) = V ∩ Rad(M).

6. If Rad(M)�M, then U is contained in a maximal submodule of M.

7. If L ⊆ U, V + L/L is a supplement of U/L in M/L.

8. If Rad(M) � M or Rad(M) ⊆ U and p : M −→ M/Rad(M) is canonical epimor-

phism, then M/Rad(M) = p(U) ⊕ p(V) (Wisbauer 1991).

Remark 2.4 Zero module is a trivial supplement of every module.
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Lemma 2.4 Let M be an R-module. If every submodule of M is a supplement in M, then

M is semisimple.

Proof Suppose Rad(M) , 0. Then there exists a non-zero element in Rad(M),

say x. By hypothesis Rx is a supplement that is Rx + K = M and Rx ∩ K � Rx

for some K ⊆ M. Since x ∈ Rad M, Rx � M and K = M. Thus Rx � Rx,

contradiction. Therefore Rad M = 0. Now let N be a submodule of M. Since N

is a supplement N + N′ = M and N ∩ N′ � N for some N′ ⊆ M. It is clear that

N ∩N′ ⊆ Rad(M) = 0⇒ N ∩N′ = 0. Hence M = N ⊕N′ and M is semisimple. �

2.3. Coclosed Submodules

Definition 2.34 A submodule N of an R-module M is called closed if N has no proper

essential extension in M, i.e. if N E K for some K ⊆M, then K = N.

Definition 2.35 A submodule N of an R-module M is coclosed in M, if whenever

N/K �M/K for some K ⊆M implies that N = K.

The relation between supplements and coclosed submodules is given in

the following proposition.

Proposition 2.3 Let N be a submodule of M. Consider the following statements:

(i) N is a supplement in M,

(ii) N is coclosed in M,

(iii) For all K ⊆ N, K �M implies K � N.

Then (i)⇒ (ii)⇒ (iii) holds and if N is a weak supplement in M, then (iii)⇒ (i)

holds (Lomp 1996).

2.4. Hollow and Uniform Modules

Definition 2.36 Let M be an R-module. If every proper submodule of M is small in M,

then M is called a hollow module.

Definition 2.37 An R-module M is called uniform if every non-zero submodule of M is

essential in M.

12



Definition 2.38 M is said to have finite uniform dimension (or finite Goldie dimension)

if there exists a sequence

0 −→
n⊕

i=1
Ui

f
−→M

where all the Ui are uniform and the image of f is essential in M. Then n is called the

uniform dimension (Goldie dimension) of M and we write udim(M) = n. If such an

integer doesn’t exist, we write udim(M) = ∞.

Definition 2.39 M is said to have hollow dimension (or finite dual Goldie dimension) if

there exists an exact sequence

M
g
−→

n⊕
i=1

Hi−→0

where all the Hi are hollow and the kernel of g is small in M. Then n is called the hollow

dimension (dual Goldie dimension) of M and we write hdim(M) = n.

2.5. Local and Semilocal Rings

Definition 2.40 A ring is called local if it has a unique maximal ideal.

Definition 2.41 Let R be a ring. If every non-zero element of R is invertible, then R is

called division ring.

Proposition 2.4 The following are equivalent for a ring R with radical J(R):

(a) R is local;

(b) R has a unique maximal left ideal;

(c) J(R) is a maximal left ideal;

(d) The set of elements of R without left inverses is closed under addition;

(e) J(R) = {x ∈ R | Rx , R};

(f) R/ J(R) is a division ring;

(g) J(R) = {x ∈ R | x is not invertible };

(h) If x ∈ R then either x or 1 − x is invertible (Anderson and Fuller 1992).

Definition 2.42 A ring R is called semilocal if R/ J(R) is a semisimple ring.

Proposition 2.5 For a ring R, consider the following two conditions:

(i) R is semilocal,

(ii) R has finitely many maximal ideals.
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In general, we have (ii)⇒ (i). The converse holds if R/ J(R) is commutative

(Lam 2001).

Theorem 2.10 For any ring R, the following statements are equivalent:

(a) R is semilocal,

(b) Every left R-module is semilocal,

(c) Every left R-module is the direct sum a semisimple module and a semilocal module

with essential radical,

(d) Every left R-module with small radical is weakly supplemented,

(e) Every finitely generated left R-module has finite hollow dimension,

(f) Every product of semisimple left R-modules is semisimple,

(g) There exists an n ∈ N and a map d : R −→ {0, 1, . . . ,n} such that for all a, b ∈ R the

following holds:

(i) d(a) = 0⇒ a is a unit,

(ii) d(a(1 − ba)) = d(a) + d(1 − ba),

(h) There exists a partial ordering (R,≤) such that:

(i) (R,≤) is an artinian poset (partially ordered set),

(ii) For all a, b ∈ R such that 1 − ba is not a unit, we have a > a(1 − ba) (Lomp 1999).

2.6. Perfect and Semiperfect Rings

Definition 2.43 A ring R is called perfect if every R-module has a projective cover.

Lemma 2.5 For a ring R, the following are equivalent:

(i) R is perfect ring;

(ii) Every left R-module is supplemented;

(iii) Every left R-module is amply supplemented;

(iv) The left R-module R(N) is supplemented (Smith 2000).

Definition 2.44 Let M be an R-module. M is called cofinitely supplemented if every

cofinite submodule of M has a supplement in M.

Definition 2.45 A ring R is called semiperfect if every finitely generated R-module has

a projective cover.
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Lemma 2.6 The following statements are equivalent for a ring R:

(i) R is semiperfect;

(ii) Every finitely generated left (respectively, right) R-module is supplemented;

(iii) Every finitely generated left (respectively, right) R-module is amply supplemented;

(iv) The left (respectively, right) R-module R is cofinitely supplemented;

(v) For every left (respectively, right) R-module M, every maximal submodule has ample

supplements in M (Smith 2000).

Definition 2.46 Let M be an R-module. M is called semiperfect if every factor module

of M has a projective cover (Wisbauer 1991).

Definition 2.47 Let M be an R-module. M is called f -semiperfect if for every finitely

generated submodule K ⊆ M, the factor module M/K has a projective cover (Wisbauer

1991).

Definition 2.48 Let M be an R-module. M is called perfect if for every index set Λ, the

sum M(Λ) is semiperfect (Wisbauer 1991).

Definition 2.49 Let R be a ring. An element a of R is called idempotent if a2 = a.

Definition 2.50 Let R be a ring and e, f ∈ R be two idempotents. If e f = f e = 0, then

e, f are called orthogonal idempotents.

Definition 2.51 An ideal (right, left, two sided) I is called right (resp. left) T-nilpotent

if for any sequence a1, a2, . . . , an, . . . of elements ai ∈ I there exists a positive integer k such

that akak−1 . . . a1 = 0 (resp. a1a2 . . . ak = 0). An ideal I is called T-nilpotent if it is right

and left T-nilpotent.

Definition 2.52 An element a is called nilpotent if there exists a positive integer n such

that an = 0. An ideal is called a nil-ideal if all its elements are nilpotent.

Remark 2.5 Clearly a T-nilpotent ideal is a nil-ideal.

The following proposition gives the relation between perfect ring and T-

nilpotent ideal. RR(N) denotes the direct sum of R-module R by index setN.
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Proposition 2.6 For a ring R, the following assertions are equivalent:

(a) RR is perfect;

(c) Every left R-module (or only R(N)) is semiperfect;

(d) Every left R-module has a projective cover;

(e) Every left R-module is (amply) supplemented;

(f) R/ J(R) is left semisimple and Rad(R(N))�R R(N);

(g) The ascending chain condition for cyclic left R-modules holds;

(h) EndR(R(N)) is f -semiperfect;

(i) R/ J(R) is left semisimple and J(R) is right T-nilpotent;

(j) R satisfies the descending chain condition for cyclic right ideals;

(k) R contains no infinite set of orthogonal idempotents and every non-zero right R-module

has non-zero socle (Wisbauer 1991).

2.7. Dedekind Domains

Definition 2.53 Let R be a ring. R is called an integral domain if it is commutative and

has no zero divisors.

Definition 2.54 Let R be an integral domain and M be an R-module. The submodule

T(M) = {m ∈ M | rm = 0 for some 0 , r ∈ R} of M is said to be torsion submodule of

M. If T(M) = M, then M is called a torsion module, and if T(M) = 0, then M is called a

torsion-free module.

Definition 2.55 Let R be a ring and p be a prime ideal of R. The submodule {m ∈ M |

pnm = 0 for some n ≥ 1} is called p-primary part of M. This submodule is indicated by

Tp(M).

Definition 2.56 Let M be an R-module. The maximum number of linearly independent

elements of M is called rank of M.

Definition 2.57 A commutative ring R is a valuation ring if its ideals are totally ordered

by inclusion. Additionally, if R is an integral domain, it is called a valuation domain. A

Noetherian valuation domain is said to be discrete valuation ring (shortly DVR). If R is

a DVR, then all of its non-zero ideals are: R > Rp > · · · > Rpn > · · · where p ∈ R is the

unique prime element (Fuchs and Salce 1985).
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Definition 2.58 Let R be an integral domain and Q be its field of fractions. An element

of Q is said to be integral over R if it is a root of a monic polynomial in R[X] (the ring of

polynomials in X with coefficients in R). A commutative domain R is integrally closed if

the elements of Q which are integral over R are just the elements of R.

Definition 2.59 A ring R is said to be Noetherian if it satisfies the following three

equivalent conditions:

(i) Every non-empty set of ideals in R has a maximal element,

(ii) Every ascending chain of ideals in R is stationary,

(iii) Every ideal of R is finitely generated.

Definition 2.60 An integral domain R is a Dedekind domain if the following hold:

1. R is a Noetherian ring.

2. R is integrally closed in its field of fractions Q.

3. All non-zero prime ideals of R are maximal.

Remark 2.6 Local Dedekind domain is a DVR (Zöschinger 1974a).

Definition 2.61 Let R be an integral domain. R is called principal ideal domain if every

ideal of R is cyclic. A principal ideal domain is a Dedekind domain.

Theorem 2.11 For a Noetherian domain R, the following are equivalent:

(i) Every coclosed module is closed,

(ii) Every closed module is coclosed,

(iii) R is Dedekind (Zöschinger 1974a).

Definition 2.62 Let R be a ring and

I1 ⊇ I2 ⊇ I3 · · ·

be a descending chain of two-sided ideals of R. Such a chain is called filtration of R and

can be used to give R the structure of topological space (Sharpe and Vamos 1972).

Definition 2.63 Let R be a ring with a filtration

I1 ⊇ I2 ⊇ I3 · · ·

A subset U of R is said to be open if, whenever r ∈ U, then there exists n such that

r + In ⊆ U. The empty set and R itself are open (Sharpe and Vamos 1972).
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Clearly:

(i) The empty set and R itself are open.

(ii) The union of an arbitrary family of open subsets of R is open.

(iii) The intersection of a finite number of open subsets of R is open.

Thus R is a topological space. If p is a prime ideal in a domain R, then the topology

given by the filtration In = p
n is called the p-adic topology.

Remark 2.7 Note that the sets r + In, where r ∈ R, are open subsets of R. In particular,

the two sided ideals

In (n = 1, 2, . . .)

are open in R.

Definition 2.64 Let R be topological space. A neighborhood of a point x is a set contain-

ing an open set which involves x. R is called Hausdorff if for every r, s ∈ R, r , s there

exists disjoint neighborhoods I and I′ such that r ∈ I and s ∈ I′.

Remark 2.8 Let R be a topological space with a filtration

I1 ⊇ I2 ⊇ I3 · · ·

Suppose that
∞⋂

n=1
In = 0 and let r, s ∈ R, r , s. Then there exists n such that r − s < In. It

follows that r + In and s + In do not meet. Thus disjoint open subsets U and V of R such

that r ∈ U and s ∈ V are found. This says that R is a Hausdorff space. On the other hand,

if
∞⋂

n=1
In , 0, then there exists r ∈

∞⋂
n=1

In, r , 0, and every open set which contains 0 also

contains r. Hence R is Hausdorff space if and only if
∞⋂

n=1
In = 0.

Definition 2.65 A sequence {rn} of elements of R is convergent with limit r if, given a

positive integer k, there exists an integer N such that rn − r ∈ Ik whenever n ≥ N.

Definition 2.66 Let R be topological space with a filtration. A sequence {rn} of elements

of R is a Cauchy sequence if, given a positive integer k, there exists an integer N such that

rm − rn ∈ Ik

whenever m, n ≥ N. Every convergent sequence is a Cauchy sequence (Sharpe and Vamos

1972).
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Definition 2.67 If every Cauchy sequence is convergent and if, further, R is Hausdorff,

then R is said to be complete in its topology (Sharpe and Vamos 1972).

Definition 2.68 Let R be a DVR. R is said to be complete if it is complete in its p-adic

topology where p = Rp is the unique maximal ideal in R (Kaplansky 1969). R is called

incomplete if it is not complete.

2.8. Local Modules

Definition 2.69 A module is called local if it has a largest proper submodule. Equiv-

alently, a module is local if and only if it is cyclic, non-zero, and has a unique maximal

proper submodule.

Proposition 2.7 An R-module M is local if and only if there is a maximal submodule N

such that N �M.

Proof (⇒) Let M be an R-module and with X + N = M for some submodule X

and a maximal submodule N of M. If X ,M, then X ⊆ N. Thus N = X+N =M⇒

N =M, contradiction, since N is maximal submodule. Hence X =M⇒ N �M.

(⇐) Let X be a proper submodule of M. Then N ⊆ N + X ⊆ M. In this case either

N = N + X or N + X =M. If N + X =M, then X =M since N �M, contradiction.

Therefore N = N + X⇒ X ⊆ N⇒ N is the largest submodule of M. �

Proposition 2.8 If an R-module M is local, then M is hollow.

Proof Let M be an R-module. For every proper submodule X of M, X ⊆

Rad M�M. Hence X�M and M is hollow. �

Proposition 2.9 Let M be an R-module. The following assertions are equivalent:

(a) M is hollow and Rad(M) ,M,

(b) M is hollow and cyclic (or finitely generated),

(c) M is local (Wisbauer 1991).

2.9. Semilocal Modules

Definition 2.70 An R-module M is called semilocal if M/Rad(M) is semisimple.

19



Proposition 2.10 For a proper submodule N of M, the following are equivalent:

(i) M/N is semisimple;

(ii) For every L ⊆M there exists a submodule K ⊆M such that L+K =M and L∩K ⊆ N;

(iii) There exists a decomposition M =M1 ⊕M2 such that M1 is semisimple, NEM2 and

M2/N is semisimple (Lomp 1999).

2.10. Supplemented Modules

Definition 2.71 Let M be an R-module. If every submodule of M has a supplement,

then M is called a supplemented module.

Note that each module need not be supplemented by the following exam-

ple.

Example 2.1 In theZ-moduleZ every non-zero proper submodule has no supplements.

Proof Let n > 1 and suppose mZ is a supplement of nZ: nZ + mZ = Z ⇒

(n,m) = 1. If m = ∓1 take some m′ , 1 with (n,m′) = 1 ⇒ nZ + m′Z = Z

such that m′Z , Z. If m , ∓1, then (n,m2) = 1 ⇒ nZ + m2Z = Z such that

m2Z & mZ. Therefore there is no proper submodule which has a supplement in

Z-module Z. �

Example 2.2 Artinian and semisimple modules are supplemented modules.

Proposition 2.11 If an R-module M is hollow, then M is supplemented.

Proof Let M be an R-module and K be a submodule of M. Then K+M =M. By

hypothesis, K ∩M = K �M. Therefore M is supplemented. �

Corollary 2.1 If an R-module M is local, then M is supplemented.

Definition 2.72 Let M be an R-module. Then an R-module N is called (finitely) M-

generated if it is a homomorphic image of a (finite) direct sum of copies of M.

The following proposition gives some properties of supplemented mod-

ules.
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Proposition 2.12 For an R-module M, the following properties hold:

(i) Let U and V be submodules of M such that U is supplemented and U + V have a

supplement in M. Then V has a supplement in M.

(ii) If M = M1 + M2 with M1 and M2 are supplemented modules, then M is also

supplemented.

(iii) If M is supplemented, then

(a) Every finitely M-generated module is supplemented.

(b) M/Rad(M) is semisimple (Wisbauer 1991).

Proof (i) Let X be a supplement of U + V in M, i.e.

M = (U + V) + X and (U + V) ∩ X� X

and let Y be a supplement of (V + X) ∩U in U, i.e.

U = (V + X) ∩U + Y and ((V + X) ∩U) ∩ Y� Y.

Since Y ⊆ U,

Y + V ⊆ U + V ⇒ (Y + V) ∩ X ⊆ (U + V) ∩ X.

Thus (Y + V) ∩ X� X since (U + V) ∩ X� X. Now

M = U + V + X = (V + X) ∩U + Y + V + X = Y + V + X

and

Y ∩ (V + X) = Y ∩U ∩ (V + X)� Y,

i.e. Y is a supplement of V + X in M. Hence we obtain

(X + Y) ∩ V ⊆ (X ∩ (Y + V)) + (Y ∩ (V + X))� X + Y.

Thus X + Y is a supplement of V in M.

(ii) Let U be a submodule of M. Then M = M1 + M2 + U and since 0

(zero) module is a supplement for M1 +M2 +U and M1 is supplemented, M2 +U

has a supplement. Hence U has a supplement in M since M2 is supplemented.

Therefore M is supplemented.

(iii)a Let N be a finitely M-generated module. Then there exists an epimor-

phism
⊕

F
M

f
−→N −→ 0 such that F is finite. Since M is supplemented a finite sum
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of M is also supplemented. By first isomorphism theorem
⊕

F
M/Ker f � N. Since

every factor module of a supplemented module is supplemented,
⊕

F
M/Ker f is

supplemented. Hence N is supplemented.

(iii)b Let N/Rad(M) be a submodule of M/Rad(M). Since M is supple-

mented there exists a supplement K of N in M, i.e. N + K = M and N ∩ K � K.

Then we obtain

M/Rad(M) = (N + K)/Rad(M) = (N/Rad(M)) + ((K + Rad(M))/Rad(M))

(N/Rad(M)) ∩ ((K + Rad(M))/Rad(M)) = (N ∩ K + Rad(M))/Rad(M)

Since N ∩ K � K, N ∩ K �M. Hence

(N ∩ K) ⊆ Rad(M)⇒ (N ∩ K) + Rad(M) = Rad(M).

Thus

(N/Rad(M)) ∩ ((K + Rad(M))/Rad(M)) = 0

so N/Rad(M) is a direct summand of M/Rad(M). Thus M/Rad(M) is

semisimple. �

Corollary 2.2 Let R be a ring and M be an R-module. If M is supplemented and

Rad(M) = 0, then M is semisimple.

Proof Clear by Proposition 2.12 ((iii)b). �

Remark 2.9 If

A α
−→ B

β
−→ C

are two epimorphisms, then βα is small if and only if α and β are small, i.e. ker βα � A

if and only if kerα� A and ker β� B (Wisbauer 1991).

Proposition 2.13 Let R be a ring and M be an R module with N ⊆ M. If in the exact

sequence

0 −→ N −→M −→M/N −→ 0

N, M/N are supplemented and N has a supplement in every H with N ⊆ H ⊆ M, then

M is supplemented.
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Proof Let U be a submodule of M, V/N be a supplement of (U+N)/N in M/N and

W be a supplement of N in V. Then W∩N �W and (V/N)∩ ((U +N)/N)� V/N.

Hence the following epimorphism

W −→ V/N −→M/(U +N)

is small by Remark 2.9, i.e. W∩ (U+N)�W so W is a supplement of (U+N) in M.

Then by Proposition 2.12 (i), U has a supplement. Therefore M is supplemented.�

Definition 2.73 Let M and Mi, (i ∈ I) be R modules. If M =
∑
I

Mi and for every

j ∈ I, M ,
∑
i, j

Mi, then the sum
∑
I

Mi is called irredundant.

The following proposition gives a characterization of supplemented mod-

ules.

Proposition 2.14 Let M be an R-module.

1. For a finitely generated module M, the following are equivalent:

(a) M is supplemented.

(b) Every maximal submodule of M has a supplement in M.

(c) M is a sum of hollow submodules.

(d) M is an irredundant sum of local submodules.

2. If M is supplemented and Rad(M) � M, then M is an irredundant sum of local

modules (Wisbauer 1991).

Theorem 2.12 Let M be a module over a commutative Noetherian ring. For a submodule

U of M such that M/U is reduced, the following are equivalent:

(i) M is supplemented;

(ii) U and M/U are supplemented (Rudlof 1991).

Corollary 2.3 Let R be a commutative Noetherian ring and M be a coatomic R-module.

M is supplemented if and only if U and M/U are supplemented for every submodule U of

M (Büyükaşık 2005).

Proof Clearly M/U is coatomic. Then by Theorem 2.9, every submodule of M/U

is coatomic. Hence every submodule of M/U contains a maximal submodule, i.e.

P(M/U) = 0. This means that M/U is reduced. Therefore the proof is completed

by Theorem 2.12. �
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Theorem 2.13 If M is a supplemented module, then every submodule X of M with

P(M) ⊆ X ⊆M is supplemented (Rudlof 1991).

Definition 2.74 Let M be an R-module. M is called uniserial if its submodules are

linearly ordered by inclusion.

The following proposition gives some characterizations of uniserial mod-

ule.

Proposition 2.15 Let M be an R-module. The following are equivalent:

(a) M is uniserial;

(b) Every factor module of M is uniform;

(c) Every factor module of M has zero or simple socle;

(d) Every submodule of M is hollow;

(e) Every finitely generated submodule of M is local;

(f) Every submodule of M has at most one maximal submodule (Clark et al. 2006).

Definition 2.75 Let M be an R-module. A family {Mi}4 of submodules is called inverse

if the intersection of two of its modules contains again a module in {Mi}4.

Definition 2.76 Let M be an R-module. M is called linearly compact if for every family

of cosets {xi +Mi}4, xi ∈ M, and submodules Mi ⊂ M (with M/Mi finitely cogenerated)

such that the intersection of any finitely many of these cosets is not empty, the intersection

is also not empty.

The following lemma gives some properties of linearly compact modules.

Lemma 2.7 Let N be a submodule of the R-module M.

1. Assume N to be linearly compact and {Mi}4 to be an inverse family of submodules of

M. Then

N +
⋂
4

Mi =
⋂
4

(N +Mi).

2. M is linearly compact if and only if N and M/N are linearly compact.

3. Assume M to be linearly compact. Then

(i) there is no non-trivial decomposition of M as an infinite direct sum;

(ii) M/Rad(M) is semisimple and finitely generated (Wisbauer 1991).
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Definition 2.77 If for every V ⊂ M with U + V = M there is a supplement V′ of U

such that V′ ⊆ V, then it is said that U has ample supplements in M.

Definition 2.78 If every submodule of M has ample supplements in M, then M is called

amply supplemented. Every amply supplemented module is supplemented.

Lemma 2.8 A module M is amply supplemented if and only if every submodule of M is

a sum of a supplemented submodule and a small submodule of M (Smith 2000).

Lemma 2.9 Let U be a linearly compact submodule of an R-module M. Then U has

ample supplements in M.

Proof Let U, V ⊆ M such that U is linearly compact and M = U + V. Define

Γ = {V′

⊆ V | U + V′

= M}. Γ , 0 since V ∈ Γ. Take a chain {Vλ} in Γ. It is an

inverse family of submodules Vλ since {Vλ} is a chain.
⋂

Vλ is a lower bound for

{Vλ}. U + (
⋂

Vλ) =
⋂

(U + Vλ) = M by the property of linearly compact module.

Thus
⋂

Vλ ∈ Γ. By Zorn’s Lemma there is a minimal element K in Γ such that

M = U+K so K is a supplement of U and K ⊆ V. Hence U has ample supplements

in M. �

Definition 2.79 An R-module F with a linearly independent spanning set {xα}α∈A is

called a free R-module with free basis (xα)α∈A.

Definition 2.80 Let R be a commutative domain and M be an R-module. M is said to

be divisible if M = rM for all non-zero r ∈ R.

Definition 2.81 Let R be a commutative domain and M be an R-module. M is said to

be bounded if rM = 0 for some r ∈ R.

The following lemma gives a characterization of supplemented modules over a

DVR.

Lemma 2.10 Let R be a DVR. For an R-module M, the following are equivalent:

(i) M has a small radical;

(ii) M is coatomic;

(iii) M is a direct sum of a finitely generated free submodule and a bounded submodule;

(iv) M is reduced and supplemented (Zöschinger 1974a).

25



The following theorem gives the structure of a supplemented module over DVR.

Theorem 2.14 Let R be a DVR. An R-module M is supplemented if and only if M =

M1⊕M2⊕M3⊕M4 where M1 � Rn1 , M2 � Qn2 , M3 � (Q/R)n3 and pn4M4 = 0 for some

integer ni ≥ 0 (Zöschinger 1974a).

Theorem 2.15 Let R be a non-local Dedekind domain. An R-module M is supplemented

if and only if it is torsion and every primary part is supplemented (Zöschinger 1974a).

The following diagram gives a general view about relations between sup-

plemented, weakly supplemented, totally supplemented and totally weak sup-

plemented modules. The number beside arrow shows the number of example.

Totally Supplemented M.

$,RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

��

+3
Supplemented M.

��

Ex 4.2
/ks

Totally Weak Supplemented M.
+3

Ex 5.3−

KS

Weakly Supplemented M.

Ex 3.4
/RRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRR

dl RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR
Ex 3.4−

KS

Ex 5.2
/ks

Figure 2.1. The relations between Supplemented, Weakly Supplemented, Totally

Supplemented and Totally Weak Supplemented Modules
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CHAPTER 3

WEAKLY SUPPLEMENTED MODULES

Definition 3.1 Let M be an R-module and U, V ⊆ M. V is called weak supplement of

U if U + V =M and U ∩ V �M.

Definition 3.2 Let M be an R-module. If every submodule of M has a weak supplement

in M, then M is called weakly supplemented module.

Example 3.1 Supplemented, artinian, semisimple, linearly compact, uniserial and hol-

low modules are weakly supplemented modules.

Proposition 3.1 Every factor module of a weakly supplemented module is weakly sup-

plemented (Lomp 1999).

Proof Let M/K be a factor module of a weakly supplemented module M and

L/K ⊆ M/K. Since M is weakly supplemented there exists a submodule N of M

such that L +N = M and L ∩N � M. Then M/K = (L +N)/K = L/K + (N + K)/K

and (L/K) ∩ ((N + K)/K)�M/K since L ∩ K �M. �

Proposition 3.2 A small cover of a weakly supplemented module is a weakly supple-

mented module (Clark et al. 2006).

Proof Let M be a small cover of a weakly supplemented module N. Then

N � M/K for some K � M. Take a submodule L of M and a weak supplement

X/K of (L + K)/K in M/K. Since K � M, by Lemma 2.2(1) we get (X ∩ L) + K =

X ∩ (L + K) � M and X is a weak supplement of L in M. Thus M is weakly

supplemented. �

In the following proposition there are some properties of weakly supple-

mented modules.

Proposition 3.3 Let M be an R-module. If M is weakly supplemented, then the following

properties hold:

(i) M is semilocal;
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(ii) M =M1 ⊕M2 with M1 semisimple and Rad(M) EM2;

(iii) Every supplement in M and every direct summand of M is weakly supplemented

(Lomp 1999).

Proof (i) and (ii) follow from Proposition 2.10 since for every L ⊆M there exists

a weak supplement K ⊆M such that L + K =M and L ∩ K ⊆ Rad(M).

(iii) Let N ⊆ M be a supplement of M. Then N + K = M and

N ∩ K � N for some K ⊆ M. By Proposition 3.1, M/K � N/N ∩ K

is weakly supplemented and by Proposition 3.2, N is weakly supplemented.

Direct summands are supplements and so they are weakly supplemented. �

Lemma 3.1 Let M be an R-module with submodules K and M1. Assume M1 is weakly

supplemented and M1 + K has a weak supplement in M. Then K has a weak supplement

in M (Clark et al. 2006).

Proof Let X be a weak supplement of M1 + K in M, i.e.

M =M1 + K + X and (M1 + K) ∩ X�M

and let Y be a weak supplement of (K + X) ∩M1 in M1, i.e.

M1 = (K + X) ∩M1 + Y and ((K + X) ∩M1) ∩ Y�M1.

Since Y ⊆M1,

Y + K ⊆M1 + K⇒ (Y + K) ∩ X ⊆ (M1 + K) ∩ X.

Thus (Y + K) ∩ X�M since (M1 + K) ∩ X�M. Now

M =M1 + K + X = ((K + X) ∩M1) + Y + K + X = Y + K + X

and

Y ∩ (K + X) = Y ∩M1 ∩ (K + X)�M1 ⊆M.

Hence Y is a weak supplement of K + X in M. Then we obtain

(X + Y) ∩ K ⊆ (X ∩ (Y + K)) + (Y ∩ (K + X))�M⇒ (X + Y) ∩ K �M.

Therefore X + Y is a weak supplement for K in M. �
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Proposition 3.4 Let M = M1 +M2, where M1 and M2 are weakly supplemented, then

M is weakly supplemented (Clark et al. 2006).

Proof Let U be a submodule of M. Then M = U + M1 + M2. Since 0 (zero)

submodule is a weak supplement of U+M1+M2 and M1 is weakly supplemented,

U +M2 has a weak supplement by Lemma 3.1. Hence U has a weak supplement

since M2 is weakly supplemented again by Lemma 3.1. �

Corollary 3.1 Every finite sum of weakly supplemented modules is weakly supple-

mented.

Proposition 3.5 Let M be an R-module. If M is weakly supplemented, then every

finitely M-generated module is weakly supplemented.

Proof Let N be a finitely M-generated module. Then there exists an epimor-

phism
⊕

F
M

f
−→N −→ 0 such that F is finite. Since M is weakly supplemented,

a finite sum of M is also weakly supplemented. By first isomorphism theorem⊕
F

M/Ker f � N. Since every factor module of a weakly supplemented module is

weakly supplemented,
⊕

F
M/Ker f is weakly supplemented. Hence N is weakly

supplemented. �

Example 3.2 Q/Z is a weakly supplemented Z-module.

Proof Firstly write M := Q/Z =
⊕

p
Mp as the direct sum of its primary p-

components Mp := Zp∞ . Every submodule N of M is of the form N =
⊕

Np where

Np = N ∩Mp ⊆Mp are the p-components of N. Since Mp is hollow, either Np =Mp

or Np �Mp. Therefore N �M if and only if Np ,Mp for all p. If N is not small in

M, setΛ = {p | Np ,Mp} and L :=
⊕
p∈Λ

Mp. Then N+L =M and N∩L =
⊕
p∈Λ

Np �M.

Hence L is a weak supplement of N in M. �

Example 3.3 Q is a weakly supplemented Z-module.

Proof Since Q is a small cover of the weakly supplemented module Q/Z, Q is

also weakly supplemented module. �

Supplemented modules are weakly supplemented but converse does not

hold in general by the following example.
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Example 3.4 The Z-module Q is weakly supplemented but not supplemented (Clark et

al. 2006).

Proof Let p be a prime number and Z(p) = {a/b ∈ Q | p does not divide b}.

Assume that Z(p) has a supplement K in Q. Then (K + Z)/Z is a supplement of

Z(p)/Z in Q/Z. Note that Z(p)/Z is the sum of all the q-component of Q/Zwhere

q runs through all primes different from p. Since (K +Z)/Z +Z(p)/Z = Q/Z and

since the p-component of Z(p)/Z is zero, the p-component of Q/Zmust equal the

p-component of (K + Z)/Z. On the other hand, if q is a prime different from p,

then the q-component of (K+Z)/Z is a submodule of the q-component ofZ(p)/Z,

that is

[(K +Z)/Z]q ⊆ ((K +Z)/Z) ∩ (Z(p)/Z)� (K +Z)/Z.

However, the q-component of a torsion Z-module is a direct summand. Hence

the q-components of (K +Z)/Z must be all zero, that is (K +Z)/Z is equal to its

p-component, namely the p-component ofQ/Z. Since (Q/Z)p = Z[1/p]/Z, where

Z[1/p] := {a/pk
∈ Q | a ∈ Z, k ≥ 0}, we have that (K + Z)/Z = Z[1/p]/Z and so

K + Z = Z[1/p]. Now K ∩ Z ⊂ K ∩ Z(p) � K and so nZ = K ∩ Z � Z[1/p] for

some non-zero number n. On the other hand, if q is a prime that does not divide

n nor p, thenZ[1/p] = nZ+ qZ[1/p], because by the Euclidean algorithm, for any

k ≥ 0, there are integers r and s such that 1 = rq + snpk. Thus 1/pk = q(r/pk) + sn ∈

qZ[1/p] + nZ. Since q , p, qZ[1/p] , Z[1/p], that is, nZ is not small in Z[1/p],

contradiction. Thus Z(p) cannot have a supplement in Q, and so, in particular, Q

is not supplemented. �

Theorem 3.1 Let 0 −→ L −→M −→ N −→ 0 be a short exact sequence for R-modules

L, M, N. If L and N are weakly supplemented and L has a weak supplement in M, then

M is weakly supplemented.

If L is coclosed, then the converse holds; that is if M is weakly supplemented, then

L and N are weakly supplemented (Büyükaşık 2005).

Proof Without loss of generality we will assume L ⊆ M. Let S be a weak

supplement of L in M, i.e. L + S =M and L ∩ S�M. Then we have,

M/L ∩ S � L/L ∩ S ⊕ S/L ∩ S.
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L/L ∩ S is weakly supplemented as a factor module of L which is weakly supple-

mented. On the other hand

S/L ∩ S �M/L � N

is weakly supplemented. Then M/L ∩ S is weakly supplemented module as a

sum of weakly supplemented modules. Therefore M is weakly supplemented by

Proposition 3.2.

Conversely, if L is coclosed, for L∩S ⊆ L, L∩S�M implies L∩S� L (see

Proposition 2.3), i.e. L is a supplement of S in M. Then by Proposition 3.3 (iii), L

is weakly supplemented and by Proposition 3.1, N is weakly supplemented. �

Proposition 3.6 Let M be an R-module. M is weakly supplemented if and only if

M/
(

n⊕
i=1

Li

)
is weakly supplemented where each Li is a hollow submodule of M.

Proof (⇒) Clear.

(⇐) Suppose n = 1 and M/L is weakly supplemented. Consider the following

exact sequence:

0 −→ L −→M −→M/L −→ 0.

Case 1: If L�M, then M is weakly supplemented since it is small cover of M/L.

Case 2: If L 3 M, then M = L + T for a proper submodule T of M. Since L is

hollow L ∩ T � L ⊆ M. Hence T is a weak supplement of L in M. Since M/L and

L are weakly supplemented, by Theorem 3.1 M is weakly supplemented.

Now suppose it holds when i < n. Let M/
(

n⊕
i=1

Li

)
be weakly supplemented.

We get the following exact sequence:

0 −→
(

n⊕
i=1

Li

)
/

(
n−1⊕
i=1

Li

)
−→M/

(
n−1⊕
i=1

Li

)
−→M/

(
n⊕

i=1
Li

)
−→ 0.

Since
(

n⊕
i=1

Li

)
/

(
n−1⊕
i=1

Li

)
� Ln, is a hollow submodule of M/

(
n−1⊕
i=1

Li

)
and M/

(
n⊕

i=1
Li

)
is weakly supplemented, M/

(
n−1⊕
i=1

Li

)
is weakly supplemented. Therefore M is

weakly supplemented by induction. �

Corollary 3.2 Let M be an R-module. M is weakly supplemented if and only if

M/
(

n⊕
i=1

Li

)
is weakly supplemented where each Li is a local submodule of M.

Proof Since local modules are hollow the proof is clear by Proposition 3.6. �
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Corollary 3.3 Let M be an R-module. If Soc(M) is finitely generated, then M/ Soc(M)

is weakly supplemented if and only if M is weakly supplemented.

Proof Since simple modules are local, the proof is clear by Corollary 3.2. �

Corollary 3.4 Let M be an R-module. M is weakly supplemented if and only if M/S is

weakly supplemented for a finitely generated supplemented submodule S of M.

Proof Since finitely generated supplemented modules are the irredundant sum

of local submodules, the proof is clear by Corollary 3.2. �

Lemma 3.2 Let M be a finitely generated module with zero radical and let N be a

non-finitely generated submodule of M. Then N does not have any weak supplement in

M.

Proof Suppose that L is a weak supplement of N in M, i.e. M = N + L and

N ∩ L � M. Now N ∩ L ⊆ Rad(M) = 0. Hence M = N ⊕ L and N is finitely

generated, a contradiction. �

Definition 3.3 Let R be a ring. An element a ∈ R is said to be von Neumann regular if

a ∈ aRa. If every a ∈ R is von Neumann regular, then R is called a von Neumann regular

ring.

Example 3.5 Let F be a field and S be the direct product
∏

n∈N
Fn, where Fn = F (n ≥ 1).

Then the element of S are the sequences {an}, where an ∈ F (n ∈ N). Let R be the subring

of S consisting of all sequences {an} such that there exist a ∈ F, k ∈ N with an = a for all

n ≥ k. Then R is a von Neumann regular ring so that the R-module R has zero radical.

The Soc(R) of the R-module R consists of all sequences {an} in R such that an = 0 for all

n ≥ k for some k ∈N. Hence Soc R is not finitely generated and Soc R does not have any

weak supplement.

Proof Let (a1, . . . , ak−1, a, a, . . .) be an element of R such that ai (1 ≤ i ≤ k − 1) and

an = a for n ≥ k. If each ai (1 ≤ i ≤ k−1) and a are non-zero elements of F, they have

inverse. Hence (a1, . . . , ak−1, a, a, . . .)(a−1
1 , . . . , a

−1
k−1, a

−1, a−1, . . .)(a1, . . . , ak−1, a, a, . . .) =

(a1, . . . , ak−1, a, a, . . .). Thus R is a von Neumann regular ring. Clearly Rad(R) = 0.

Now let T be a simple submodule of R and 0 , a = (a1, . . . , ak−1, a, a, . . .) ∈ T ⊆ R.

For an element r = (a−1
1 , 0, 0, . . . , 0, . . .) ∈ R, ra = (1, 0, 0, . . . , 0, . . .) ∈ T. Then
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A1 =< (1, 0, 0, . . . , 0, . . .) > is an submodule of R which is generated by ra ∈ T.

Hence A1 ⊆ T. Since T is simple and A1 is different from zero, A1 = T. Hence

Soc(R) is not finitely generated and by Lemma 3.2, Soc(R) does not have any weak

supplement. �

Corollary 3.3 does not hold when Soc(M) is not finitely generated by the

following example.

Example 3.6 Let R be a ring and M be R-module R as in the Example 3.5. Then

M/ Soc(M) is simple but M is not weakly supplemented.

Proof Let Soc(M) $ A ⊆ M. Since Soc(M) $ A there exists an element x of

A\ Soc(M) such that x = (a1, . . . , an, a, a, . . .). For an element r = (0, . . . , 0, a−1, a−1, . . .)

of R, rx = (0, . . . , 0, 1, 1, . . .) ∈ A. Now let m = (m1, . . . ,mk,m,m, . . .) ∈ M. Then m

can be represented in the following way:

m = (m1, . . . ,mk, 0, 0, . . .) + (0, . . . , 0,m,m, . . .)

where (m1, . . . ,mk, 0, 0, . . .) ∈ Soc(M) $ A and (0, . . . , 0,m,m, . . .) ∈ A so m ∈ A

implies M = A. Hence Soc(M) is a maximal submodule of M and M/ Soc(M) is

simple. Thus M/ Soc(M) is weakly supplemented but M is not weakly supple-

mented by Example 3.5. �

Since simple modules are local and Corollary 3.3 does not hold when

Soc(M) is not finitely generated, Corollary 3.2 does not hold when the direct sum

of local submodules is not finite. Hence Proposition 3.6 does not hold when the

direct sum of hollow submodules is not finite because local modules are hollow.

Definition 3.4 An R-module is called decomposable if it is a direct sum of cyclic modules

and finitely generated torsion-free modules of rank one. If R is a principal ideal domain,

then a decomposable module is exactly a direct sum of cyclic modules (Kaplansky 1952).

Definition 3.5 Let M be an R-module. A submodule N is called pure if rN = N ∩ rM

for every r ∈ R.

Theorem 3.2 Let R be a Dedekind domain, M be an R-module and S be a pure submodule

such that M/S is decomposable. Then S is a direct summand of M (Kaplansky 1952).

As a result of this theorem, the following corollary can be given.
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Corollary 3.5 Let R be a Dedekind domain, L, M, N be R-modules and

0 −→ L −→M −→ N −→ 0

be an exact sequence with L pure in M and N decomposable. L and N are weakly

supplemented if and only if M is weakly supplemented.

Proof (⇒) By Theorem 3.2, the sequence is splitting so M is weakly supple-

mented since L and N are weakly supplemented.

(⇐) Since direct summands of weakly supplemented modules are weakly sup-

plemented, L and N are weakly supplemented. �

Theorem 3.3 Let R be a Dedekind domain, M be an R-module and S be a pure submodule

of bounded order (that is, rS = 0 for some non-zero r in R). Then S is a direct summand

of M (Kaplansky 1952).

Corollary 3.6 Let R be a Dedekind domain, L, M, N be R-modules and

0 −→ L −→M −→ N −→ 0

be an exact sequence with L pure submodule of bounded order. L and N are weakly

supplemented if and only if M is weakly supplemented.

Proof (⇒) Clear since the sequence is splitting by Theorem 3.3.

(⇐) By Proposition 3.3 (iii). �

By Ωwe denote the set of all maximal ideals of R.

A characterization of weakly supplemented modules over Dedekind domain is

given in the following theorem.

Theorem 3.4 Let R be a Dedekind domain and M an R-module. Then M is weakly

supplemented module if and only if

(i) M/Rad(M) is semisimple,

(ii) M/T(M) has a finite Goldie dimension (finite rank),

(iii) Tp(M) is a direct sum of an Artinian and a bounded submodule for every p ∈ Ω

(Zöschinger 1986).
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Lemma 3.3 Let R be a domain and M be an R-module. Then the torsion submodule

T(M) of M is closed in M (Büyükaşık 2005).

Proof Suppose T(M)EK for some K ⊆M. Let k ∈ K, then since T(M) is essential

in K, we have 0 , rk ∈ T(M) for some r ∈ R. Then srk = 0 for some 0 , s ∈ R. Since

R is a domain, sr , 0. Therefore k ∈ T(M), i.e. K = T(M). Hence T(M) is closed in

M. �

Theorem 3.5 Let R be a Dedekind domain and M be an R-module. Then M is weakly

supplemented if and only if

(i) M/Rad(M) is semisimple;

(ii) T(M) and M/T(M) are weakly supplemented (Büyükaşık 2005).

Proof (⇒)(i) By Theorem 3.4, M/Rad(M) is semisimple.

(ii) M/T(M) is weakly supplemented as a factor module of a weakly supplemented

module. By Lemma 3.3, T(M) is a closed submodule of M. Then by Theorem 2.11,

T(M) is a coclosed submodule of M. By Proposition 2.3, T(M) is a supplement

in M. Every supplement in M is weakly supplemented by Proposition 3.3 (iii).

Hence T(M) is weakly supplemented.

(⇐) M/T(M) is weakly supplemented so it has finite rank by Theorem 3.4. Since

T(M) is weakly supplemented, Tp(M) is a direct sum of artinian and a bounded

submodule for every p ∈ Ω. Now by Theorem 3.4, M is weakly supplemented. �

Proposition 3.7 Let R be a Dedekind domain and M be an R-module. If T(M) has a

weak supplement in M, then M is weakly supplemented if and only if T(M) and M/T(M)

are weakly supplemented.

Proof (⇐) By Theorem 3.1.

(⇒) By Theorem 3.5. �

The following theorem gives the structure of weakly supplemented mod-

ules over a DVR.

Theorem 3.6 Let R be a DVR and M be an R-module. Then M is weakly supplemented

if and only if M = Qn1 ⊕ (Q/R)n2 ⊕ B ⊕N, where B is bounded, N is reduced torsion-free

with finite rank and ni ≥ 0 (Büyükaşık 2005).
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CHAPTER 4

TOTALLY SUPPLEMENTED MODULES

Definition 4.1 Let M be an R-module. If every submodule of M is supplemented, then

M is called a totally supplemented module.

Example 4.1 Artinian and semisimple modules are totally supplemented.

Lemma 4.1 Every factor module of totally supplemented module is totally supplemented

(Smith 2000).

Proof Let M be a totally supplemented module and N/K be a submodule of

M/K for some submodule N containing K. Since M is totally supplemented N is

supplemented. Hence N/K is supplemented as a factor module of supplemented

module. Thus M/K is totally supplemented. �

Corollary 4.1 Every homomorphic image of a totally supplemented module is totally

supplemented module.

Remark 4.1 Let M be an R-module. If M is totally supplemented, then M is amply

supplemented by Lemma 2.8 because for every submodule N of M, N = N + 0, i.e. N is

the sum of a supplemented and a small module.

A totally supplemented module is supplemented but converse does not

hold in general. The following example shows that a supplemented module need

not be totally supplemented.

Example 4.2 Let S be any commutative local domain which is not a field and let X be

any free S-module of infinite rank. Let R be the commutative ring [S,X] which denotes

the commutative ring of matrices  s x

0 s


where s ∈ S, x ∈ X with the usual matrix addition and multiplication. Then the R-module

R is local, i.e. supplemented but not totally supplemented.

36



Proof Since S is local it has the unique maximal ideal, say m. Then [m,X] is the

unique maximal ideal of R, because for an element r < m, r−1 exists so that r x

0 r


 r−1 x

0 r−1

 =
 1 (rx + r−1x)

0 1


and  1 (rx + r−1x)

0 1


 1 −(rx + r−1x)

0 1

 =
 1 0

0 1

 .
Hence

 r x

0 r

 < [m,X] since r < m but there exists inverse of

 r x

0 r

 in R.

Thus R is a local ring. Furthermore R-module R is supplemented. Let a denote

the ideal [0,X] of R. It is clear that if Y is an S-submodule of X, then [0,Y] is

an R-submodule of a and the mapping Y −→ [0,Y] is an isomorphism from the

lattice of S-submodules of X to the lattice of R-submodules of a. But the Jacobson

radical J(S) is not T-nilpotent because if J(S) were a T-nilpotent ideal, it would be

a nil-ideal. However, not every nil-ideal is T-nilpotent. Hence nil-ideals situated

between T-nilpotent ideals and the ring itself. Since J(S) is the unique maximal

ideal, it is nil-ideal, i.e. for every non-zero element of J(S), say x there exists nx > 0

such that xnx = 0, implies x = 0 so J(S) = 0. If J(S) = 0, then S is field but this

contradicts with assumption. Therefore J(S) is not T-nilpotent so S is not perfect

ring by Proposition 2.6. Thus X is not a supplemented S-module by Lemma

2.5. Moreover the R-module a is not supplemented, because Y −→ [0,Y] is an

isomorphism. It follows that the R-module R is not totally supplemented (Smith

2000). �

In general a supplemented module is not totally supplemented but under

some conditions they are equivalent. The following theorem clarifies this claim.

Theorem 4.1 Let R be a non-local Dedekind domain. Then the following statements are

equivalent for an R-module M:

(i) M is supplemented.

(ii) M is amply supplemented.

(iii) M is totally supplemented.

(iv) M is a torsion module such that Tp(M) is a direct sum of an Artinian submodule and

a bounded submodule for each maximal ideal p of R (Smith 2000).

37



If R is a local Dedekind domain (i.e. a DVR), then there are two cases to

consider, namely when R is complete and when R is incomplete.

The following theorem gives a characterization of totally supplemented

modules over complete DVR.

Theorem 4.2 Let R be a complete DVR with field of fractions Q. Then the following are

equivalent for an R-module M:

(i) M is supplemented.

(ii) M is amply supplemented.

(iii) M is totally supplemented.

(iv) There exist non-negative integers a, b, c such that M = M1 ⊕M2 ⊕M3 ⊕M4 is a

direct sum of a submodule M1 � Ra, a submodule M2 � Qb, a submodule M3 � (Q/R)c

and a bounded submodule M4 (Smith 2000).

Remark 4.2 In case R is an incomplete DVR with field of fractions Q, an R-module M

is supplemented if and only if M satisfies (iv) of Theorem 4.2. However the following

statements are equivalent for an R-module M:

(a) M is amply supplemented,

(b) M is totally supplemented,

(c) M satisfies (iv) of Theorem 4.2 with b ≤ 1 (Zöschinger 1974b). In particular, if R is an

incomplete DVR with field of fractions Q, then the R-module M = Q⊕Q is supplemented

but not amply supplemented so it is not totally supplemented. Hence a finite direct sum

of totally supplemented module is not totally supplemented (Smith 2000).

It is known that a finite direct sum of supplemented modules is supple-

mented but this is not true for amply (or totally) supplemented modules by Re-

mark 4.2. The following theorem shows that direct sum of a totally supplemented

module and a semisimple module is totally supplemented.

Theorem 4.3 Let a module M =M1 ⊕M2 be a direct sum of submodules M1, M2 such

that M2 is semisimple. Then M is totally supplemented if and only if M1 is totally

supplemented (Smith 2000).

Proof (⇒) Clear by Lemma 4.1.

(⇐) Suppose that M1 is totally supplemented. Let N be a submodule of M. Then

38



M2 = (N∩M2)⊕L for some submodules L of M2 since M2 is semisimple. It follows

that

M =M1 ⊕M2 =M1 ⊕ (N ∩M2) ⊕ L

and hence

N = N ∩M = N ∩ (M1 ⊕ (N ∩M2) ⊕ L) = (N ∩M2) ⊕ (N ∩ (M1 ⊕ L))

by Modular Law.

Consider the submodule H = N ∩ (M1 ⊕ L) of M1 ⊕ L. Note that

H ∩ L = N ∩ (M1 ⊕ L) ∩ L = N ∩ L = 0⇒ H ∩ L = 0.

Thus H embeds in M1 because

H ∩M2 = N ∩ (M1 ⊕ L) ∩M2 = N ∩ [M1 ∩M2 + L] = 0

and for the projection π1 : M −→ M1; we have Kerπ1 = M2, therefore

π1 |H: H −→ M1 is a monomorphism. By hypothesis, H is supplemented. But,

being semisimple, N ∩M2 is supplemented. Therefore

N = (N ∩M2) ⊕ (M1 ⊕ L) ∩N = (N ∩M2) ⊕H

is supplemented as a sum of supplemented modules. Hence N is supplemented

and M is totally supplemented. �

Definition 4.2 Let M be an R-module. The annihilator of M is ann(M) = {r ∈ R |

rm = 0 f or all m ∈M}.

Lemma 4.2 Let a module M = M1 ⊕ · · · ⊕ Mn be a finite direct sum of submodules

Mi (1 ≤ i ≤ n), for some n ≥ 2, such that R = ann(Mi) + ann(M j) for all 1 ≤ i < j ≤ n.

Then

N = (N ∩M1) ⊕ · · · ⊕ (N ∩Mn)

for every submodule N of M (Smith 2000).

The following lemma shows that a finite direct sum of amply (or totally)

supplemented modules is amply (or totally) supplemented by using Lemma 4.2.
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Lemma 4.3 Let a module M = M1 ⊕ · · · ⊕Mn be a finite direct sum of amply (totally)

supplemented submodules Mi (1 ≤ i ≤ n), for some positive integer n ≥ 2, such that

R = ann(Mi) + ann(M j) for all 1 ≤ i < j ≤ n. Then M is amply (totally) supplemented

(Smith 2000).

Proof First suppose that Mi is amply supplemented for all 1 ≤ i ≤ n. Let N, K

be submodules of M such that M = N + K. By Lemma 4.2,

N = (N ∩M1) ⊕ · · · ⊕ (N ∩Mn) and K = (K ∩M1) ⊕ · · · ⊕ (K ∩Mn).

For each 1 ≤ i ≤ n, Mi = (N ∩Mi) + (K ∩Mi) and there exists a submodule Li of

K ∩Mi such that Mi = (N ∩Mi) + Li and N ∩ Li � Li. Let L = L1 ⊕ · · · ⊕ Ln. Then

L is a submodule of K, M = N + L and N ∩ L = (N ∩ L1) ⊕ · · · ⊕ (N ∩ Ln) � L by

Lemma 2.2 (2). Hence L is a supplement of N in M. It follows that M is amply

supplemented.

Now suppose that Mi is totally supplemented for all 1 ≤ i ≤ n. Let V ⊆ U

be submodules of M. By Lemma 4.2,

U = (U ∩M1) ⊕ · · · ⊕ (U ∩Mn) and V = (V ∩M1) ⊕ · · · ⊕ (V ∩Mn).

For each 1 ≤ i ≤ n, V∩Mi is a submodule of U∩Mi and, by hypothesis, there exists

a supplement Wi of V ∩Mi in U ∩Mi. Let W =W1 ⊕ · · · ⊕Wn. By argument used

in the first part of this proof, W is a supplement V in U. Thus U is supplemented.

It follows that M is totally supplemented. �

Lemma 4.4 Let R be a commutative ring and an R-module M = M1 ⊕ · · · ⊕Mn be a

finite direct sum of local submodules Mi (1 ≤ i ≤ n), for some positive integer n. Then M

is amply supplemented. If, in addition, M is Noetherian, then M is totally supplemented

(Smith 2000).

For any module M, Loc(M) will denote the sum of all local submodules of

M and Cof(M) will denote the sum of all cofinitely supplemented submodules of

M.

Theorem 4.4 Let R be any ring. The following statements are equivalent for an R-

module M:

(i) M is cofinitely supplemented;
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(ii) Every maximal submodule of M has a supplement in M;

(iii) The module M/Loc(M) does not contain a maximal submodule;

(iv) The module M/Cof(M) does not contain a maximal submodule (Alizade et al. 2001).

A supplemented module need not be totally supplemented in general but

the following theorem shows that under some conditions a supplemented module

can be totally supplemented.

Lemma 4.5 For any commutative ring R, every Noetherian supplemented R-module is

totally supplemented (Smith 2000).

Proof Let M be a Noetherian supplemented R-module. By Theorem 4.4, M =

Loc M and hence M = L1+· · ·+Ln for some positive integer n and local submodules

Li (1 ≤ i ≤ n). Let L denote the module L1⊕· · ·⊕Ln. Since a finite sum of Noetherian

modules is Noetherian, L is Noetherian. Thus L is totally supplemented by Lemma

4.4. M is totally supplemented by Corollary 4.1. �

Theorem 4.5 Let K be a linearly compact submodule of a module M. Then M is (totally)

supplemented if and only if M/K is (totally) supplemented (Smith 2000).

Proof In each case the necessity is clear. Conversely, suppose that M/K is

supplemented. Note that K is supplemented. Moreover for every submodule H

of M with K ⊆ H, Lemma 2.9 shows that K has a supplement in H. By Proposition

2.13, M is supplemented.

Now suppose M/K is totally supplemented. Let N ⊆ M. Then N ∩ K

is a linearly compact submodule of N and N/N ∩ K � (N + K)/K. N/N ∩ K is

supplemented since M/K is totally supplemented. By the above argument N is

supplemented. Thus M is totally supplemented. �

Corollary 4.2 Let a module M = M1 ⊕ M2 ⊕ M3 be a direct sum of submodules

M1, M2, M3 such that M2 is linearly compact and M3 is semisimple. Then M is to-

tally supplemented if and only if M1 is totally supplemented (Smith 2000).

Proof (⇒) Clear by Lemma 4.1.

(⇐) Suppose M1 is totally supplemented.

M/M2 = (M1 ⊕M2 ⊕M3)/M2 �M1 ⊕M3
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Since M1 is totally supplemented and M3 is semisimple then M1 ⊕M3 is totally

supplemented by Theorem 4.3. Hence M/M2 is totally supplemented, i.e. M is

totally supplemented by Theorem 4.5. �

Proposition 4.1 Let R be a commutative Noetherian ring and U be a submodule of an

R-module M such that M/U is reduced. The following are equivalent:

(i) M is totally supplemented.

(ii) U and M/U are totally supplemented.

Proof (i)⇒ (ii) Clear.

(ii)⇒ (i) Take the following exact sequence:

0 −→ U −→M −→M/U −→ 0.

Let N be a submodule of M. If N ⊆ U, then N is supplemented. If N * U, then

(N +U)/U � N/N ∩U.

Since M/U is reduced N/N ∩U is reduced. Then we have

0 −→ N ∩U −→ N −→ N/N ∩U −→ 0

such that N ∩ U and N/N ∩ U are supplemented. Hence N is supplemented by

Theorem 2.12 so M is totally supplemented. �

Corollary 4.3 Let R be a commutative Noetherian ring and M be an R-module. If Rad M

is totally supplemented and M/Rad(M) is supplemented, then M is totally supplemented.

Conversely, if M is totally supplemented, then Rad(M) and M/Rad(M) are totally

supplemented.

Proof The claim can be explained on the exact sequence below.

0 −→ Rad(M) −→M −→M/Rad(M) −→ 0.

Let N be a submodule of M. If N ⊆ Rad(M), then N is supplemented since Rad(M)

is totally supplemented. If N * Rad(M), then

(N + Rad(M))/Rad(M) � N/N ∩ Rad(M).

Since M/Rad(M) is supplemented, by Corollary 2.2 M/Rad(M) is totally sup-

plemented so N/(N ∩ Rad(M)) is supplemented. Since M/Rad(M) is reduced
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N/(N∩Rad(M)) is reduced. Hence N is supplemented by Theorem 2.12. Further-

more M is totally supplemented.

Converse is clear. �

Corollary 4.4 Let M be a module over a commutative Noetherian ring and K be a cofinite

submodule. K and M/K are totally supplemented if and only if M is totally supplemented.

Proof Since K is cofinite, M/K is coatomic. A coatomic module is reduced over

commutative Noetherian ring. Then the proof is completed by Proposition 4.1. �

Corollary 4.5 Let M be a module over a commutative Noetherian ring. If M has a

maximal submodule which is totally supplemented, then M is totally supplemented.

Proof Since maximal modules are cofinite, the proof is clear by Corollary 4.4.�

Theorem 4.6 Let R be a DVR. Then the following hold for an R-module M:

(i) Rad(M) is supplemented if and only if M is supplemented.

(ii) M is supplemented if and only if T(M) and M/T(M) are supplemented (Zöschinger

1974a).

The immediate consequences of Theorem 4.6 can be given.

Corollary 4.6 Let R be a DVR and M be an R-module. Rad M is totally supplemented

if and only if M is totally supplemented.

Proof (⇐) Clear.

(⇒) Let U be a submodule of M. Since Rad(U) ⊆ Rad(M) and Rad(M) is totally

supplemented, Rad(U) is supplemented submodule of M. By Theorem 4.6, U is

supplemented. Hence M is totally supplemented. �

Corollary 4.7 Let R be a DVR and M be an R-module. M is totally supplemented if

and only if T(M) and M/T(M) are totally supplemented.

Proof (⇐) Let N be a submodule of M. If N ⊆ T(M), then N is supplemented.

If N * T(M), then

(N + T(M))/T(M) � N/N ∩ T(M) = N/T(N).

T(N) is supplemented since T(N) ⊆ T(M) and N/T(N) is supplemented since it is

isomorphic to a submodule of M/T(M). Now the proof is clear by Theorem 4.6.

(⇒) Clear. �
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Definition 4.3 Let M be an R-module. M is called semi-Artinian if all of its non-zero

factor modules have minimal submodules, equivalently Soc(M/N) , 0 for every proper

submodule N of M.

Theorem 4.7 Let M be a module over a commutative Noetherian ring. For a semi-

Artinian submodule U of M, the following are equivalent:

(i) M is supplemented.

(ii) U and M/U are supplemented (Rudlof 1991).

Corollary 4.8 Let R be a commutative Noetherian ring. For an R-module M, M/ Soc(M)

is totally supplemented if and only if M is totally supplemented.

Proof (⇐) Clear.

(⇒) The claim can be explained on the following exact sequence:

0 −→ Soc(M) −→M −→M/ Soc(M) −→ 0.

Let N be a submodule of M. If N ⊆ Soc(M), then N is supplemented. If N * Soc(M),

then

(N + Soc(M))/ Soc(M) � N/N ∩ Soc(M) = N/ Soc(N).

Soc(N) is supplemented since Soc(N) ⊆ Soc(M) and N/ Soc(N) is supplemented

since it is isomorphic to a submodule of M/ Soc(M). Furthermore Soc(N) is semi-

Artinian because Soc ((Soc(N))/K) , 0 for every proper submodule K of Soc(N).

Hence N is supplemented by Theorem 4.7. Moreover M is totally supplemented.

�
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CHAPTER 5

TOTALLY WEAK SUPPLEMENTED MODULES

Definition 5.1 Let M be an R-module. If every submodule of M is weakly supplemented,

then M is said to be totally weak supplemented module.

Example 5.1 Artinian, semisimple, linearly compact and uniserial modules are totally

weak supplemented modules.

Lemma 5.1 Every factor module of a totally weak supplemented module is totally weak

supplemented.

Proof Let M be a totally weak supplemented module and N/K be a submodule

of M/K for some submodule N which contains K. Since M is totally weak sup-

plemented N is weakly supplemented. Hence N/K is weakly supplemented as a

factor module of weakly supplemented module. Therefore M/K is totally weak

supplemented module. �

Corollary 5.1 Every homomorphic image of a totally weak supplemented module is

totally weak supplemented module.

Proposition 5.1 Let M be an R-module. M is weakly supplemented if and only if M/K

is weakly supplemented for a linearly compact submodule K of M.

Proof (⇐) Clear.

(⇒) Consider the following exact sequence:

0 −→ K −→M −→M/K −→ 0.

Since K is linearly compact it is weakly supplemented. By Lemma 2.9, K has an

ample supplement in M, therefore K has a weak supplement in M. Hence M is

weakly supplemented by Theorem 3.1. �
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Proposition 5.2 Let M be an R-module. M is totally weak supplemented if and only if

M/K is totally weak supplemented for a linearly compact submodule K of M.

Proof (⇒) Clear.

(⇐) Consider the following exact sequence:

0 −→ K −→M −→M/K −→ 0.

Take a submodule N of M. If N ⊆ K, then N is weakly supplemented since it is a

submodule of a linearly compact module. If N * K, then

(N + K)/K � N/N ∩ K.

Hence we have the following exact sequence:

0 −→ N ∩ K −→ N −→ N/N ∩ K −→ 0.

Since N ∩ K is a submodule of a linearly compact module, N ∩ K is linearly

compact so it is weakly supplemented. N/N ∩K is isomorphic to a submodule of

M/K so N/N ∩ K is weakly supplemented. Hence N is weakly supplemented by

Proposition 5.1. �

Proposition 5.3 Let M be an R-module. M is weakly supplemented if and only if M/U

is weakly supplemented for a uniserial submodule U of M.

Proof (⇒) Clear.

(⇐) Consider the following exact sequence:

0 −→ U −→M −→M/U −→ 0.

Since U is uniserial, it is hollow by Proposition 2.15 so weakly supplemented.

Case 1: If U �M, then M is weakly supplemented by Proposition 3.2.

Case 2: If U 3 M, then U + N = M for a proper submodule N of M. Since

U∩N ⊆ U and U is hollow, every proper submodule is small in U, i.e. U∩N � U

so U∩N �M. Thus U has a weak supplement. Hence M is weakly supplemented

by Theorem 3.1. �
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Proposition 5.4 Let M be an R-module. M is totally weak supplemented if and only if

M/U is totally weak supplemented for a uniserial submodule U of M.

Proof (⇒) Clear.

(⇐) Consider the following exact sequence:

0 −→ U −→M −→M/U −→ 0.

Take a submodule N of M. If N ⊆ U, then N is weakly supplemented because

submodules of uniserial modules are uniserial and uniserial modules are weakly

supplemented. If N * U, then

(N +U)/U � N/(N ∩U).

Hence we have the following exact sequence:

0 −→ (N ∩U) −→ N −→ N/(N ∩U) −→ 0.

Since N ∩U is uniserial, it is weakly supplemented. N/(N ∩U) is isomorphic to a

submodule of M/K so N/(N∩U) is weakly supplemented. Therefore N is weakly

supplemented by Proposition 5.3. �

Lemma 5.2 Let R be an integral domain and p be a maximal ideal of R. Then for every

p-primary R-module M, M/Rad(M) is semisimple (Büyükaşık 2005).

Proof Since R is commutative we have

Rad(M) =
⋂
q∈Ω

qM,

where Ω is the set of all maximal ideals of R. Let q be a maximal ideal of R and

suppose q , p. Let x ∈ M. Since M is p-primary, pnx = 0 for some n ∈ N. Since

pn * q and q is a maximal ideal, pn + q = R, i.e. 1 = p+ q for some p ∈ pn and q ∈ q.

So x = px + qx = qx ∈ qM, hence M = qM. Therefore

Rad(M) =
⋂
q∈Ω

qM = qM.

Then since R/p is a field, M/Rad(M) = M/pM is a semisimple R/p-module, and

so it is semisimple as an R-module. �
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Corollary 5.2 Let R be a Dedekind domain and M be a torsion R-module, then

M/Rad(M) is semisimple (Büyükaşık 2005).

Proof Since R is a Dedekind domain and M is a torsion R-module, we have

M =

⊕
p∈Ω

Tp(M)

 .
Then

M/Rad(M) =

⊕
p∈Ω

Tp(M)

 / ⊕
p∈Ω

Rad(Tp(M))

 �⊕
p∈Ω

(
Tp(M)/Rad Tp(M)

)
is semisimple by Lemma 5.2. �

Lemma 5.3 Let R be a Dedekind domain and M be p-primary for some p ∈ Ω. Then M

is divisible if and only if M = pM (Büyükaşık 2005).

Lemma 5.4 Let R be a Dedekind domain and M be a p-primary R-module. Suppose M is

a direct sum of an artinian submodule and a bounded submodule. Then every submodule

of M is a direct sum of an artinian submodule and a bounded submodule (Büyükaşık

2005).

Proof Suppose

M = A ⊕ B

with A an artinian and B a bounded submodule of M. Let N be a submodule of M

and D be the divisible part of N. Then N = D⊕S where S is a reduced submodule

of N. Let

π : A ⊕ B −→ B

be the canonical projection, thenπ(D) is a divisible submodule of B as a homomor-

phic image of the divisible submodule D. Since B is bounded it has no non-zero

divisible submodule, i.e. π(D) = 0. Therefore D ⊆ A, hence D is artinian. Since B

is bounded then pnB = 0 for some n ∈N. Then

pnS ⊆ pnM = pnA,

so pnS is artinian. Then for the descending chain

pnS ⊇ pn+1S ⊇ · · · ⊇ pn+kS ⊇ · · ·

there exists t ∈N such that pn+kS = pn+t+1S. Then by Lemma 5.3, pn+tS is a divisible

submodule of S, but S is reduced, so we must have pn+kS = 0, which shows that S

is bounded. �
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Now we are able to give the following characterization of totally weak

supplemented modules over semilocal Dedekind domains.

Theorem 5.1 Let R be a semilocal Dedekind domain and M be an R-module. The

following are equivalent.

(i) M is totally weak supplemented,

(ii) M is weakly supplemented,

(iii) M/T(M) has finite Goldie dimension and Tp(M) is a direct sum of an artinian

submodule and a bounded submodule for every p ∈ Ω (Büyükaşık 2005).

Proof (i)⇒ (ii) Clear.

(ii)⇒ (iii) By Theorem 3.4.

(iii) ⇒ (i) Let U be a submodule of M. Since R is semilocal, then U/Rad(U) is

semisimple by Theorem 2.10. (U + T(M)) /T(M) has finite Goldie dimension as a

submodule of M/T(M), then

U/T(U) � (U + T(M))/T(M)

also has finite Goldie dimension.

By Lemma 5.4, Tp(U) is a direct sum of an Artinian submodule and a bounded

submodule. Therefore by Theorem 3.4, U is weakly supplemented, hence M is a

totally weak supplemented module. �

Totally weak supplemented modules are weakly supplemented but con-

verse does not hold in general by the following example.

Example 5.2 The Z-module Q is weakly supplemented but it is not totally weak sup-

plemented.

Proof Take submoduleZ of Q. Let m, n > 1 and (m,n) = 1. Then mZ+ nZ = Z

and mZ ∩ nZ = mnZ. But mnZ is not small in Z because for any prime number

p which does not divide mn, mnZ + pZ = Z. Hence the submodule Z of Q is not

weakly supplemented. MoreoverZ-moduleQ is not totally weak supplemented.

�

Totally supplemented modules are totally weak supplemented but con-

verse does not hold in general. The following example shows that totally weak

supplemented modules need not be totally supplemented.
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Example 5.3 Let R be incomplete DVR. M = Q ⊕ Q is totally weak supplemented but

it is not totally supplemented.

Proof By Remark 4.2, it is known M = Q ⊕Q is not totally supplemented over

incomplete DVR. Since M is supplemented, i.e. weakly supplemented it is totally

weak supplemented by Theorem 5.1. �

Proposition 5.5 Let R be a non-semilocal domain and M be an R-module. If M is a

totally weak supplemented module, then M is torsion (Büyükaşık 2005).

Theorem 5.2 Let R be a non-semilocal Dedekind domain. Then an R-module M is a

totally weak supplemented module if and only if M is torsion and Tp(M) is a direct sum

of an artinian and a bounded submodule for every p ∈ Ω (Büyükaşık 2005).

Proof (⇒) By Proposition 5.5, M is a torsion module. Since M is weakly sup-

plemented, by Theorem 3.4, Tp(M) is a direct sum of an Artinian submodule and

a bounded for every maximal ideal p.

(⇐) Let U be a submodule of M. Then by Corollary 5.2, U/Rad(U) is semisimple.

Since M is torsion we have U = T(U) and so U/T(U) has finite Goldie dimension.

By Lemma 5.4, Tp(U) is a direct sum of an Artinian submodule and a bounded

submodule. Then by Theorem 3.4, U is weakly supplemented. Therefore M is a

totally weak supplemented module. �

Corollary 5.3 Let R be a Dedekind domain and M be a torsion R-module. Then the

following are equivalent:

(i) M is weakly supplemented,

(ii) M is a totally weak supplemented module,

(iii) Tp(M) is a direct sum of an Artinian submodule and a bounded submodule for every

maximal ideal p (Büyükaşık 2005).

Proof If R is semilocal, then this follows by Theorem 5.1. If R is non-semilocal,

the proof follows from by Theorem 3.4 and Theorem 5.2. �

Proposition 5.6 Let R be a semilocal Dedekind domain and M be an R-module. M

is totally weak supplemented module if and only if T(M) and M/T(M) are totally weak

supplemented.
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Proof (⇒) Clear.

(⇐) Let U ⊆M. Consider the following exact sequence:

0 −→ T(M) −→M −→M/T(M) −→ 0.

If U ⊆ T(M), then U is weakly supplemented. If U * T(M), then

(U + T(M))/T(M) � U/U ∩ T(M) = U/T(U).

T(U) is weakly supplemented since T(U) ⊆ T(M) and U/T(U) is weakly supple-

mented since it is isomorphic to a submodule of M/T(M). Since R is semilocal

U/Rad(U) is semisimple by Theorem 2.10. Hence U is weakly supplemented by

Theorem 3.5 so M is totally weak supplemented. �

Proposition 5.7 Let R be a Dedekind domain and M be a torsion module. Suppose M/L

is weakly supplemented for some L�M. Then M is a totally weak supplemented module

(Büyükaşık 2005).

Proof M is weakly supplemented since M is a small cover of M/L with the

canonical epimorphism σ : M −→ M/L. Hence by Corollary 5.3, M is a totally

weak supplemented module. �

Corollary 5.4 Let R be a Dedekind domain and M be a torsion R-module with

Rad(M)�M. Then M is a totally weak supplemented module (Büyükaşık 2005).

Proof By Corollary 5.2, M/Rad(M) is semisimple, so it is weakly supplemented.

Then M is weakly supplemented since M is a small cover of M/Rad(M). Therefore

by Proposition 5.7, M is a totally weak supplemented module. �

Corollary 5.5 Let R be a non-local Dedekind domain. Then an R-module M is supple-

mented if and only if M is totally supplemented (Büyükaşık 2005).

Corollary 5.6 Let R be a non-local Dedekind domain and M be a torsion R-module. Then

M is supplemented if and only if M is a totally weak supplemented module (Büyükaşık

2005).

Corollary 5.7 Let R be a non-semilocal Dedekind domain and M be an R-module. Then

the following are equivalent:
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(i) M is supplemented,

(ii) M is totally supplemented,

(iii) M is a totally weak supplemented module (Büyükaşık 2005).

Proposition 5.8 Let R be a Dedekind domain and M be an R-module. Suppose either R

is semilocal or M is torsion. The following are equivalent:

(i) Rad(M) is weakly supplemented and has a weak supplement in M,

(ii) M is weakly supplemented,

(iii) M is a totally weak supplemented module (Büyükaşık 2005).

Proof (i) ⇒ (ii) In both cases M/Rad(M) is semisimple and so weakly supple-

mented. Then by Theorem 3.1, M is weakly supplemented.

(ii)⇒ (iii) By Theorem 5.1 if R is semilocal. By Corollary 5.3 if M is torsion.

(iii)⇒ (i) Clear. �

Lemma 5.5 Let R be a DVR and M be a torsion R-module. Then the following are

equivalent:

(i) M is supplemented,

(ii) M is totally supplemented,

(iii) M is weakly supplemented,

(iv) M is totally weak supplemented,

(v) The divisible part of M is artinian and the reduced part is bounded (Büyükaşık 2005).

Corollary 5.8 Let R be a complete DVR and M be an R-module. Then the following are

equivalent:

(i) M is totally supplemented.

(ii) M is supplemented.

(iii) M is weakly supplemented.

(iv) M is totally weak supplemented (Rudlof 1991).
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CHAPTER 6

CONCLUSION

The aim of this study is to give a survey to determine the structures, char-

acterizations and properties of supplemented, weakly supplemented, totally sup-

plemented and totally weak supplemented modules. As a result of this survey, we

see that they have different properties. Although the finite sum of supplemented

(weakly supplemented) modules is supplemented (weakly supplemented), the

finite sum of totally supplemented modules is not totally supplemented in gen-

eral. But we haven’t reached any information about whether the finite sum of

totally weak supplemented modules is totally weak supplemented or not. In

general supplemented, weakly supplemented, totally supplemented and totally

weak supplemented modules are not equivalent. But we see that over complete

DVR (discrete valuation ring) they are equivalent.

However supplemented, weakly supplemented, totally supplemented and

totally weak supplemented modules are all closed under homomorphic images.

As a result of this study we see that supplemented, weakly supplemented, totally

supplemented and totally weak supplemented modules can be characterized in

terms of factor modules of them by linearly compact submodules over arbitrary

rings. We have also reached characterizations of supplemented, weakly sup-

plemented, totally supplemented, totally weak supplemented modules on exact

sequences under some conditions.
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