Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2768
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSevil, Hakkı Erhan-
dc.contributor.authorÖzdemir, Serhan-
dc.date.accessioned2017-01-12T12:39:12Z
dc.date.available2017-01-12T12:39:12Z
dc.date.issued2011
dc.identifier.citationSevil, H. E., and Özdemir, S. (2011). Prediction of microdrill breakage using rough sets. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 25(1), 15-23. doi:10.1017/S0890060410000144en_US
dc.identifier.issn0890-0604
dc.identifier.issn0890-0604-
dc.identifier.issn1469-1760-
dc.identifier.urihttps://doi.org/10.1017/S0890060410000144
dc.identifier.urihttp://hdl.handle.net/11147/2768
dc.description.abstractThis study attempts to correlate the nonlinear invariants’ with the changing conditions of a drilling process through a series of condition monitoring experiments on small diameter (1 mm) drill bits. Run-to-failure tests are performed on these drill bits, and vibration data are consecutively gathered at equal time intervals. Nonlinear invariants, such as the Kolmogorov entropy and correlation dimension, and statistical parameters are calculated based on the corresponding conditions of the drill bits. By intervariations of these values between two successive measurements, a drop–rise table is created. Any variation that is within a certain threshold (+-20% of the measurements in this case) is assumed to be constant. Any fluctuation above or below is assumed to be either a rise or a drop. The reduct and conflict tables then help eliminate incongruous and redundant data by the use of rough sets (RSs). Inconsistent data, which by definition is the boundary re-gion, are classified through certainty and coverage factors. By handling inconsistencies and redundancies, 11 rules are ex-tracted from 39 experiments, representing the underlying rules. Then 22 new experiments are used to check the validity of the rule space. The RS decision frame performs best at predicting no failure cases. It is believed that RSs are superior in dealing with real-life data over fuzzy set logic in that actual measured data are never as consistent as here and may dominate the monitoring of the manufacturing processes as it becomes more widespread.en_US
dc.language.isotren_US
dc.publisherCambridge University Pressen_US
dc.relation.ispartofArtificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAMen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectKolmogorov entropyen_US
dc.subjectNonlinear time series analysisen_US
dc.subjectRough setsen_US
dc.titlePrediction of microdrill breakage using rough setsen_US
dc.typeArticleen_US
dc.authoridTR130950en_US
dc.institutionauthorSevil, Hakkı Erhan-
dc.institutionauthorÖzdemir, Serhan-
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.volume25en_US
dc.identifier.issue1en_US
dc.identifier.startpage15en_US
dc.identifier.endpage23en_US
dc.identifier.wosWOS:000287388000002en_US
dc.identifier.scopus2-s2.0-79952984663en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1017/S0890060410000144-
dc.relation.doi10.1017/S0890060410000144en_US
dc.coverage.doi10.1017/S0890060410000144en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2768.pdfMakale Dosyası217.71 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 9, 2024

Page view(s)

286
checked on Nov 18, 2024

Download(s)

248
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.