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Prediction of microdrill breakage using rough sets
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Abstract

This study attempts to correlate the nonlinear invariants’ with the changing conditions of a drilling process through a series
of condition monitoring experiments on small diameter (1 mm) drill bits. Run-to-failure tests are performed on these drill
bits, and vibration data are consecutively gathered at equal time intervals. Nonlinear invariants, such as the Kolmogorov
entropy and correlation dimension, and statistical parameters are calculated based on the corresponding conditions
of the drill bits. By intervariations of these values between two successive measurements, a drop—rise table is created.
Any variation that is within a certain threshold (+20% of the measurements in this case) is assumed to be constant.
Any fluctuation above or below is assumed to be either a rise or a drop. The reduct and conflict tables then help eliminate
incongruous and redundant data by the use of rough sets (RSs). Inconsistent data, which by definition is the boundary re-
gion, are classified through certainty and coverage factors. By handling inconsistencies and redundancies, 11 rules are ex-
tracted from 39 experiments, representing the underlying rules. Then 22 new experiments are used to check the validity of
the rule space. The RS decision frame performs best at predicting no failure cases. It is believed that RSs are superior in
dealing with real-life data over fuzzy set logic in that actual measured data are never as consistent as here and may dominate
the monitoring of the manufacturing processes as it becomes more widespread.

Keywords: Kolmogorov Entropy; Nonlinear Time Series Analysis; Rough Sets

1. INTRODUCTION

Nonlinear time series analysis has become a reliable tool for
the study of complicated dynamics from measurements.
Chaos and nonlinear dynamics have provided new theoretical
and conceptual tools that allow comprehending the complex
behaviors of systems. Fault detection schemes by these tech-
niques are quite checkered in application. They range from
the classification of complex current waveforms in transform-
ers via the fractal dimension method (Purkait & Chakravorti,
2003) to the quantification of the backlash that showed cha-
otic behavior (Tjahjowidodo et al., 2007), trying to correlate
the measures with the changing backlash conditions. The lat-
ter incidentally mentions the advantages and the limitations
of chaotic classification by concluding that chaos quantifica-
tion could be used as a quantitative mechanical signature of a
backlash component. However, there is a drawback. The pro-
posed method becomes ineffective for noisy data, and proper
noise reduction needs to be applied. This work is a represen-
tative study for the use of chaos in fault detection, displaying

cons and pros in potential research.
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In tool status detection, there is a plethora of methods that
are in wide use compared to nonlinear time series analysis.
For example, Ravindra et al. (1997) used acoustic emission
for tool condition monitoring. They found that autoregressive
parameters, power of the acoustic emission signal, and auto-
regressive residual signals are quite useful features in metal
cutting to determine the condition of the tool. Scheffer and
Heyns (2001) employed vibration and strain measurements
from the tool tip to detect the wear of diamond tools used
in turning operations of the aluminum pistons. Classification
of wear was achieved through self-organizing networks.
Tansel et al. (2000a) tried to establish a link between the
cutting force characteristics and the tool wear using neural
networks in microend milling. Another Tansel et al. (1998)
study made a classification by adaptive resonance theory and
abductory induction mechanism to estimate wear again in mi-
croend milling with acceptable results. Panda et al. (2008) used
artificial neural networks, similar to the work by Tansel et al.
(20000b), in the prediction of the wear in drill bits. Panda et al.’s
work is a step forward from Tansel et al. (2000b) in multiple
ways. First, not just one but two network architectures were
implemented in the prediction of flank wear, and then the
performance of these two topologies was compared. Second,
multiple sensing was achieved in measuring the vibration data.
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Thrust force and torque, along with vibration signals, were
measured and included in the decision process, and a better
prediction was claimed. Atlas et al. (2000) stated that hidden
Markov models (HMMs) could be quite expedient for milling
operations with three different time scales, showing that HMMs
give accurate wear prediction. Sortino (2003) handled determi-
nation of tool status from a novel perspective. He processed
tool images and applied a statistical filter for the optical detec-
tion of tool status. However, this method failed to pinpoint early
or smaller wear or faults on the tool.

One way of quantifying a nonlinear time series is the mea-
sure of the rate of loss of predictability, Kolmogorov—Sinai
entropy (KSE), which reveals how far into the future a series
can be predicted with a given set of initial information. Even
though KSE has almost become commonplace in medicine
for prediction of epileptic seizures, it is hardly a widespread
tool in condition monitoring in engineering applications.
One relevant study on predictability via metric entropy in a
medical work is that of Drongelen et al. (2003), who demon-
strated the feasibility of using the metric entropy of the time
series to anticipate seizures in pediatric patients with intract-
able epilepsy. Drongelen et al. came up with successful an-
ticipation times between 2 and 40 min. A similar study on
the prediction of epilepsy seizures has prompted a research
on KSE in failure analysis that forms the basis of this paper
(Sevil, 2006).

Nonlinear analyses can be thought of as decision support
tools that are capable of indicating the development of
probable failure in machine components or systems. Machine
tool condition monitoring has great significance in modern
manufacturing processes. Various techniques have been em-
ployed for a rapid response to unexpected tool breakage to
prevent possible damage and down time. Although there
are different types of condition monitoring techniques cur-
rently in use for the diagnosis and prediction of drill bit break-
age, little attention has been paid to the detection of chaotic
behavior in time series vibration signals. Ertunc and Oysu
(2004) proposed real-time identification of drill bit wear based
on HMMs on cutting force and torque measurements during
metal drilling. Furthermore, Li and Tso (1999) used the fuzzy
logic classification method to classify the tool wear states.
Both methods proved their reliabilities on classification of tool
wear.

Rough sets (RSs) are a relatively new method, which
Pawlak (1982) proposed in the early 1980s. Essentially, it
is related to fuzzy sets, an extension to the classical set theory,
and is an approximation of sets using an ensemble of sets,
which will be explained shortly. Fuzzy logic has been formu-
lated historically to account for subjective uncertainty, but the
reasoning contains no fuzziness because the deduction is
exclusively crisp. In contrast, RSs deal with not only this
so-called subjective uncertainty but also incongruent and/or
incomplete data that might be present because of the lack of
precision and other limitations.

The good aspect of RSs is that it is self-sufficient and
does not require any previous knowledge frame. Despite the
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seemingly close resemblance to fuzzy set theory and Demp-
ster—Shafer theory, it is an independent discipline in its own
right. It is quite capable of finding patterns beneath the sur-
face, thus helping to reduce redundancies, providing data re-
duction if possible. By a series of formulations, data are clas-
sified and assigned significance. This feature assorts data into
degrees of certainties, by which consistency of data may be
understood. RS theory also has applications in the field of
condition monitoring. The most relevant work was the study
by Pasek (2006). Pasek carried out a classification framework
using RSs. The classification was based on wear, and grouped
into three quality levels. All three condition attributes were
fuzzified into three memberships. The differences from this
study are manifold. Pasek classified tool wear, but we ap-
proached the tool failure phenomenon as a binary event. Con-
dition attributes are formed by both statistical and nonlinear
measures in this study. High levels of sensitivity, accuracy,
and specificity in Pasek’s work attest to the success of the
method. Another successful story may be found in Novicki
et al. (1992). They collected data on rolling bearings from
industry and from the laboratory. The study reported prom-
ising results when vibration and acoustic symptoms were
available. In other recent works, RS theory was used for diag-
nosis of the valve fault for multicylinder diesel engines (Shen
et al., 2000; Tay & Shen 2001), as well as for medical imple-
mentations (Szczuka & Wojdyllo, 2001). Lui and Shi (2001)
proposed a novel method to detect faults of valves in a three-
cylinder reciprocating pump using RSs, and they achieved
identification of different types of faults based on their re-
spective positions. Szczuka and Wojdy (2001) also tried to
accomplish a new tool for noise-resistant classification of
EEG signals based on RSs. These authors came up with prom-
ising results by combining wavelets, neural networks, and
RSs. Despite these examples, the RSs technique is rarely
used in the diagnostics of machine tool conditions. Specif-
ically, implementation of the RSs method to machine tool
diagnosis and prediction of tool breakage is rare in the litera-
ture.

In this study, the prediction of small drill bit breakage oc-
currence was examined by RS rules, whereby an attempt was
made to correlate the chaos invariants’ variation with the chang-
ing conditions of a drilling process in order to introduce a pos-
sible early damage detection method for mechanical systems.

2. NONLINEAR TIME SERIES ANALYSIS

2.1. Fractal dimensions

The strange behavior of chaotic systems has the geometry of
the set in phase space formed by the trajectories of a system
called the attractor, whose trajectories in phase space will
have some final state on it, as the whole system evolves in
time. Briefly, an attractor is a set to which all neighboring
trajectories converge. Moreover, the attractor of a system deter-
mines the long-term behavior of that system. Attractors are
generally called strange attractors, because they generally
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have a very complicated fractal (self-similarity) structure in
chaotic systems. They usually have a noninteger dimension
that is less than the dimension of phase space; for example,
if the phase space is two dimensional, the attractor will have

less than two dimensions.

One of the most widely used fractal dimension is the cor-
relation dimension that is used for measuring the complexity
that quantifies the geometry and the shape of the strange
attractor. The correlation sum is used to estimate the correlation
dimension. The correlation sum for a collection of points s, in
some vector space is the fraction of all possible pairs of points
that are closer than a given distance € in a particular norm. The

correlation sum of a time series is computed by

2 N N
C(m, &) = m;j;rl}l(s = lIsi = s;ID.

where C is the correlation sum of the system in embedded di-
mension m. The correlation sum just counts the pairs (s; s;)
whose distance is smaller than €. In Equation (1), || ¢ || repre-
sents the vector distance (Euclid distance of two vectors) and

H is the Heaviside step function.

The correlation sum just counts the pairs (s; s;) whose dis-
tance is smaller than €. In the limit of an infinite amount of
data (N — o0) and for small €, it is expected that C is to scale
like a power law, C(g) oc &P, and according to this power law
property a dimension value D, which is based on the behavior

of a correlation sum, can be defined as

log C(N
D(e) = lim lim 22C®- &)
g—0N—oo logg

This dimension is called the correlation dimension, and it is a
characteristic quantity for a time series. The correlation di-
mension simply shows how C(g) scales with . There are dif-
ferent types of fractal dimensions, for example, box counting
and Hausdorff, which differ from each other by the “pack-

aging” of data points (Kaya, 2005).

2.2. Metric entropy

The metric (Kolmogorov—Sinai) entropy is a measure to
characterize the chaotic motion of a system in an arbitrary-
dimensional phase space. It is proportional to the rate of loss
of information at the current state of a dynamical system in the
course of time. Metric entropy is a measure of the rate of loss
of predictability, which indicates how far into the future a pre-
diction may be possible, given the initial conditions. It origi-

nates from information theory.

In time series analysis, if the observation of a system is
considered as a source of information, then the metric entropy
can supply a quantitative answer as to how much information
can be possessed about the future when the entire past has

been observed. The metric entropy of a time series is

K = Tim limlog—C"™ %)
m—o0 £—0 C(m +1,¢)
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3. INFERENCE BY RSs

3.1. Formulation

A set D is rough (approximate, inexact) with respect to a col-
lection of sets C if it has a nonempty boundary region when
approximated by C. Otherwise, it is crisp (exact). Thus, the
set of elements is rough if it cannot be defined in terms of the
data, that is, it has some elements that can be classified neither
as a member of the set nor its compliment in view of the data.

The lower approximation of a set D (D could be an attribute:
1, 0; yes, no; etc.) is the set of all facts that can be for certain
classified as D in view of the data, the upper approximation
of a set D, with respect to the data, is the set of all facts that
can be possibly classified as D, the boundary region of a set
X with respect to the data D is the set of all the facts that can
be classified as neither D nor non-D in view of the data
(Pawlak, 2002).

Given a collection of sets C = {C}, C, C3, ...} and a set
D, in which a nonempty finite set of objects (search space) U,
define the lower approximation of D by C,

D" =U{C;} suchthat C;ND=C; “)

upper approximation of D by C,

DY =U{C} suchthat CiND # &; ®)

and boundary of D by C,

DY =DV - D;. (©6)

3.2. Analysis of the experimental data

The experimental setup for the prediction of small drill bit
breakage is shown in Figure 1. The test rig comprises a
printed circuit board drill, drill stand, drill bit, accelerometer,
power supply/coupler, and a PC. Small high-speed steel twist
drill bits (1 mm) were used in the experiments. A high-carbon
steel block is used as a drilling material because of its high
hardness, which ensures that the drill bit is subjected to
greater torque and thrust forces.

Generally, drill bit breakage, which is caused by buckling
and fluctuations in the cutting force, is a major problem with
small drill bits of 2 mm or less. The amount of feed, as well as
the torque and thrust force, may become too big for the di-
ameter, and tend to cause breakage in small drill bits. With
a standard size drill bit of about 3 mm or more, drill bit break-
age is not a major problem, because as the diameter increases,
the drill bit becomes rigid and tends to wear out instead of
breaking. Therefore, 1-mm diameter drill bits were used for
testing, because tool breakage occurs catastrophically and it
is difficult to predict the breakage beforehand.

Vibration data were taken by a ceramic shear triaxial accel-
erometer (Kistler 8762A50) with high sampling speed
(192 kHz), where for the feeding process scale weight is
used to provide a constant feed rate for the drill (Fig. 2).
Run-to-failure tests were performed on each drill bit, and
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1 - Accelerometer

2 -Drill

3 - Fixing Device

4 - Column

5 - Lever Arm

6 - Scale Weight

7 - Drill Bit

8 - Drill Stand

9 - Spring

10 - Personal Computer
11 - Power Supply/Coupler
12 - Steel Block

Fig. 1. The schema of the drill-bit breakage experiments.

vibration data were taken consecutively at equal time intervals.
Statistical parameters (crest factor and kurtosis) were com-
puted from the raw vibration data, which is a one-dimensional
time series at the beginning. For computation of nonlinear
invariants (Hausdorff dimension, correlation dimension, and
metric entropy), a phase space is reconstructed out of this
one-dimensional time series (Fig. 3). By intervariations of
these values between two successive measurements, a drop—
rise table was created. Any variation that is within a certain
threshold, which in this case was 4+ 20% of the measurements,
was assumed to be constant. Any fluctuation above or below
was assumed to be either a rise or a drop. After this drop-rise
table was created, the occurrence of breakage was examined
for one or two steps ahead from the values in the table.

Examination of the data reveals the following: the data are
inconsistent, which is because of events 6, 7,9, 11, 15, 21, 22,
26, 27, and 30. Set {2, 3, 8,13,14,19, 20, 25, 29, 32, 33, 35,
36, 37, 39} is the maximal set of facts that can certainly be
classified as drill bit failure in terms of the drilling character-
istics. Set {2, 3, 6,7, 8,9, 11, 13, 14, 15, 19, 20, 21, 22, 25,
26,27,29, 30, 32, 33, 35, 36, 37, 39} is the set of all the facts
that can possibly be classified as incidents of failure. Set {6,
7,9, 11, 15, 21, 22, 26, 27, 30} is the set of facts that can be
classified as neither failure nor none.

In the light of the above sets, the following approximations
are possible. Note that the set {6, 7,9, 11, 15, 21, 22, 26, 27,
30} is the difference between sets {2, 3, 6,7, 8,9, 11, 13, 14,
15, 19, 20, 21, 22, 25, 26, 27, 29, 30, 32, 33, 35, 36, 37, 39}
and {2, 3, 8, 13, 14, 19, 20, 25, 29, 32, 33, 35, 36, 37, 39}.
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Fig. 2. A schematic of a lever force diagram.

The set {2, 3, 8, 13, 14, 19, 20, 25, 29, 32, 33, 35, 36, 37,
39} is the lower approximation (certain) of the set {2, 3, 6,
8, 13, 14, 19, 20, 25, 27, 29, 30, 32, 33, 35, 36, 37, 39}.
The set {2,3,6,7,8,9, 11, 13, 14, 15, 19, 20, 21, 22, 25,
26,217,29,30, 32,33, 35,36, 37,39} is the upper approxima-
tion (possibly) of the set {2, 3, 6, 8, 13, 14, 19, 20, 25, 27, 29,
30, 32, 33, 35,36, 37,39}. The set {6, 7,9, 11, 15, 21, 22, 26,
27, 30} is the boundary region (inconsistent) of the set {2, 3,
6, 8, 13, 14, 19, 20, 25, 27, 29, 30, 32, 33, 35, 36, 37, 39}.

3.3. Data reduction

Superfluous information can be removed to reduce the data,
still allowing conclusions to be drawn. But the consistency
of the data must be preserved. Thus, we may define the degree
of consistency. A minimal subset of data that preserves con-
sistency of the data is called a “reduct.” Tables 1 and 2 are
reduct tables.

An in-depth analysis of the failure charts produced the fol-
lowing no-breakage and breakage tables. A close inspection

Raw Data (vibration)

)

One Dimensional
Time Series

h 4

Reconstruction of

Crest Factor

Phase Space
/‘ r\
Hausdorff Correlation Box Counting
Dimension Sum Dimension
Correlation Metric
Dimension Entropy

Fig. 3. A flow chart of the data analysis process.
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Table 1. Reduct table for no breakage

Case CF CD ME Breakage
1 D R C No
5 D C C No
7 C C R No
9 C D C No
10 R C C No
11 R D C No
16 C R C No
24 R D R No

Note: CF, crest factor; CD, correlation dimension; ME, metric
entropy; D, drop; R, rise; C, constant.

would reveal that the factors to failure are different from those
to no failure. Crest factor, correlation dimension, and metric
entropy are the sole inputs that should be considered for a
healthy life if Hausdorff dimension and kurtosis remained
constant. For example, in Table 2, if all the rest did not alter,
a rise in metric entropy meant no failure; in Table 2, a rise in
Hausdorff dimension ended in failure, as in case 3.

3.4. Certainty and coverage factors

Let ¢ designate the “condition” and W the “decision” of the
rule. In short, if & then V. Define two conditional probabil-
ities (Pawlak, 2002): the certainty factor and the coverage
factor. In the certainty factor,

number of all cases satisfying ¢ and ¥

P(Y|d) = 7
Vi) number of all cases satisfying ¢ ™
and in the coverage factor,
number of all cases satisfying ¢ and ¥
P(¥|d) = — 8)
number of all cases satisfying ¥
Table 2. Reduct table for breakage
Case CF HD CD ME Breakage
2 R D R C Yes
3 C R C C Yes
6 R C D C Yes
13 D C C R Yes
19 c? C C C Yes
20 R D D C Yes
27 C C D C Yes
29 C C C D Yes
30 C C C R Yes
33 C C D R Yes

Note: CF, crest factor; HD, Hausdorf dimension; CD, correlation di-
mention; ME, metric entropy; R, rise; D, drop; C, constant.

#Even though the CF and kurtosis values change as if coupled in all cases,
there is a rise in kurtosis while the CF value remains constant for this case.

19

The certainty factor distinguishes consistent cases from
inconsistent ones. It is absolutely 1 when the data are crisp.
When a boundary region is in question, it falls short of 1,
designating the percentage of a certain inconsistent outcome,
given a certain set of conditions. In contrast, the coverage
factor is an indicator of how widespread a certain set of condi-
tions and their associated decisions are among all of the same
sort of decisions. For example, the coverage factor helps clarify
the extent of rainy road accidents among all types of accidents.

3.5. Interpretation

Table 3 assigns 1 to the certainty factor of case 1. If (there is a
drop in crest factor) and (there is a rise in correlation dimen-
sion), then (there is no failure) is a certain decision rule.
However, for example, as in case 27, if (there is a drop in cor-
relation dimension), then (there is a failure) is an uncertain de-

Table 3. Certainty and coverage factors

Case Certainty Coverage Failure
1 2/2 = 1.00 2/21 = 0.091 No
2 1/1 = 1.00 1/18 = 0.055 Yes
3 1/1 = 1.00 1/18 = 0.055 Yes
4 5/5 = 1.00 5121 = 0.238 No
5 1/1 = 1.00 1/21 = 0.047 No
6 1/3=0.33 1/18 = 0.055 Yes
7 172 = 0.50 1/21 = 0.047 No
8 1/1 = 1.00 1/18 = 0.055 Yes
9 4/5 = 0.80 4/21 = 0.190 No

10 4/4 = 1.00 4/21 = 0.190 No
11 2/3 = 0.67 2/21 = 0.091 No
12 4/4 = 1.00 4/21 = 0.190 No
13 1/1 = 1.00 1/18 = 0.055 Yes
14 1/1 = 1.00 1/18 = 0.055 Yes
15 4/5 = 0.80 4/21 = 0.190 No
16 4/4 = 1.00 4/21 = 0.190 No
17 4/4 = 1.00 4/21 = 0.190 No
18 4/4 = 1.00 4/21 = 0.190 No
19 1/1 = 1.00 1/18 = 0.055 Yes
20 1/1 = 1.00 1/18 = 0.055 Yes
21 4/5 = 0.80 4/21 = 0.190 No
22 2/3 = 0.67 2/21 = 0.091 No
23 1/1 = 1.00 1/21 = 0.047 No
24 1/1 = 1.00 1/21 = 0.047 No
25 1/1 = 1.00 1/18 = 0.055 Yes
26 4/5 = 0.80 4/21 = 0.190 No
27 1/5=0.20 1/18 = 0.055 Yes
28 4/4 = 1.00 4/21 = 0.190 No
29 1/1 = 1.00 1/18 = 0.055 Yes
30 112 =0.50 1/18 = 0.055 Yes
31 4/4 = 1.00 4/21 = 0.190 No
32 1/1 = 1.00 1/18 = 0.055 Yes
33 3/3 =1.00 3/18 = 0.167 Yes
34 4/4 = 1.00 4/21 = 0.190 No
35 1/1 = 1.00 1/18 = 0.055 Yes
36 3/3 =1.00 3/18 = 0.167 Yes
37 1/1 = 1.00 1/18 = 0.055 Yes
38 2/2 = 1.00 2/21 = 0.09 No
39 3/3 =1.00 3/18 = 0.167 Yes
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Table 4. Summary of repetition of instances

H.E. Sevil and S. Ozdemir

Case Kurt. CF HD CD ME Repeated Breakage Paired Cases
1 C D C R C No 1, 38
6 R R C D C 3 Yes 6 (and 11, 22) inconsistent cases
7 C C C C R 2 No 7 (and 30) inconsistent cases
9 C C C D C 5 No 9, 15, 21, 26 (and 27) inconsistent cases
10 R R C C C 4 No 10, 12, 18, 28
11 R R C D C 3 No 11, 22 (and 6) inconsistent cases
16 C C C R C 4 No 16, 17, 31, 34
27 C C C D C 5 Yes 27 (and 9, 15, 21, 26) inconsistent cases
30 C C C C R 2 Yes 30 (and 7) inconsistent cases
33 C C C D R 3 Yes 33, 36, 39

Note: Kurt., kurtosis; CF, crest factor; HD, Hausdorf dimension; CD, correlation dimension; ME, metric entropy; C, constant; D, drop; R, rise.

cision rule, as its certainty factor denotes. Certain decision
rules in the table describe the lower approximation of the
set of facts, and uncertain ones describe the boundary region
of the set of facts.

Coverage factors define how many times the conditions of a
certain case have repeated themselves through other cases.
The characteristic values of case 19 have occurred just once,
but the values of case 10 have turned up 4 times. The summary
of the repetition of the instances is provided in Table 4.

3.6. Inductions of rules from reduct tables

By RS analysis, a number of inductions may be reached. The
following is the core of the 39 by 7 datato 11 plain rules. This
is accomplished by a compromise of conflict, and reduction
of redundance, and simplification. The rules are stated with
the condition that all the remaining unstated parameters are
assumed unchanged during these specified changes. Redun-
dance reduction and simplification were performed either
by Table A.1 or Table 4. To give an example, cases 10, 12,
18, and 28 are repeated four times. In all of these cases, no
breakage is observed and all four instances are consistent.
All but one must be removed to reduce the redundancy, in
which case 10 was kept and the remaining were discarded.
Rule number 4 is generated from case 10. The reduction of
redundancy may be observed in Table 1, which is the reduct
table for no failure. When statistical measures kurtosis and
crest factor gave almost identical results, kurtosis was also
opted out. Table 4 gives a summary of all of the cases in all
39 experiments.

—

If (a drop in ME) then failure.

If (arise in CF) and (a drop in CD) and (a rise in ME)
then no failure.

If (a drop in CF) then no failure.

If (a rise in CF) then no failure.

If (a rise in CD) then no failure.

If (a rise in HD) then failure.

If (a drop in CD) and (a rise in ME) then failure.

If (a drop in CF) and (a rise in CD) then no harm.

N

NN W

9. If (arise in CF) and (a rise in HD) and (a drop in CD)
then failure.
10. If (a drop in CF) and (a rise in ME) then failure.
11. If (arise in CF) and (a drop in HD) and (a drop in CD)
then failure.

In the above, ME is the metric entropy, CF is the crest fac-
tor, CD is the correlation dimension, and HD is the Hausdorf
dimension.

3.7. Performance analysis

Following the rule inductions given above a series of tests
were conducted to check the validity of these rules. These
test results are given in the Table A.2. Table 5 outlines the
performance evaluation, which is also known as the confu-
sion matrix. Having established a rule base from earlier 39
experiments, 22 new experiments were conducted. Of these
22 experiments, 8 failures and 14 no failures occurred. Out
of 8 failures, unfortunately, only 1 could be foreseen. Seven
failure cases were wrongly predicted as no failures. Out of
14 no-failure cases, 12 were correctly estimated to be no fail-
ures. Correctly predicted failure cases were designated by true
positive (TP), correctly predicted no-failure ones were shown
by true negative (TN), incorrectly predicted failure cases were

Table 5. Performance evaluation

Reference (Model) Test

Results
Newly Conducted Test Results Failure No Failure
Failure TP =1 FN =7
No Failure FP=2 TN =12
Predictive Value
Accuracy Sensitivity Specificity Positive Negative
0.59 0.125 0.86 0.33 0.63
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denoted by false positive (FP), and finally, incorrectly pre-
dicted no failure cases were given by false negative (FN).

Five measures of performance were also provided to evalu-
ate the overall capability of the rule space. These are accuracy
= (TP + TN)/(number of tests), sensitivity = TP/(TP + FN),
specificity = TN/(TN + FP), positive predictive value =
TP/(TP + FP), negative predictive value = TN/(TN + FN).
Accuracy reveals the percentage of correctly identified cases
of all failures and no failures. Fifty-nine percent accuracy was
reached in diagnosing the drill bits. Sensitivity reflects the
identified failures among all failures, which is conspicuously
low, but specificity gives an idea of the performance of cor-
rectly diagnosing the no-failure situations. There was 86%
specificity versus 12.5% sensitivity, which is an interesting
finding. The rules are better at discovering no failures than
failure instances. The positive predictive value was 33.3% be-
cause only one of three failure predictions was correct. The
negative predictive value was 63%, and these results corrobo-
rated our findings.

4. CONCLUSIONS

A condition monitoring experiment through a series of accel-
erometer measurements on a table-top drill stand was carried
out. Vibration time series data were used to reconstruct the
original embedding space. The detailed analysis of determin-
ing the optimal lag, embedding dimension, and so forth can
be found in Sevil (2006). Using this single vibration measure-
ment, six factors were used overall, which were thought to
influence the fate of the drill bits. Statistical measures, as well
as nonlinear ones, were explained. The number of parameters
were deliberately kept high so as to produce an elimination,
if possible, through an in depth analysis. Although not men-
tioned here, neural network modeling was also conducted to
see if a black-box model would fit the observed data. Unfor-
tunately, different topologies of backpropagation neural net-
works did not provide a satisfactory model. A fuzzy model was
rejected immediately as a result of incomplete, inconsistent,
and possibly inaccurate data. The threshold used for the RS
table (20%) would obviously affect the precision of the con-
structed model. The 20% threshold in this study was chosen
based on examining the structure of the data. The 11 extracted
rules represent the core information. We believe that RSs suit
real data better than some of the existing techniques that could
not handle the data characteristics. Nevertheless, RSs have
their own limitations. For example, the conclusions we draw
are not universal but are valid only for the data. Whether they
can be generalized depends on how representative the data are
of a larger data set. On a longer set of experiments, a manual
inspection of the data would have been impossible, in which
case a code should have been written to convert numeric re-
cords into qualitative labels, which are capable of dealing
with the “kinks” in the data.

This work treated tool monitoring as a binary event. We
believe that the binary approach lacks the finesse of similar
research that instead observes gradual wear, because a gradual
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wear measurement and qualification are more realistic. How-
ever, the dimensional variations in the drill bit diameter mo-
tivated us to employ binary characterization. Another aspect
is that 1-mm drill bits were tested. Any wear measurement
within this range would be subject to variations, errors that
could invalidate the experiments. The best part of the binary
nature of the experiments is that the attributions do not involve
uncertainty regarding the outcome of the experiments.

In the current state, the performance of the methodology
must not be attributed to the general performance of the
RSs. The manifold factors from the data to the measures
employed all affect the eventual level of success. This level
could definitely be improved through an increased number of
sensors and better noise filtering, which have priority in the
future research of the authors. Even though this article may
have failed to convince the reader of the rightful merits of
RSs, it is understood that it has more to do with the observation
and the use of the measures rather than the nature of the RSs.

More research must be conducted regarding a list of metrics
that could qualify the success of experiments for a similar setup.
Inthis way, finding the extent to which success has been achieved
could be possible. It is still uncertain that the use of all of the
metrics mentioned has contributed to the current study. There
are overlaps among some of the measures, and some of these
overlaps exist for most of the 39 experiments. This hints that at
least one measure, for example, the crest factor, could have
been discarded with little expense to the overall performance.

The proposed RS decision frame performed better on
healthy drill bits than bits approaching breakage. This could
be explained by the nature of the data in the drill bit experi-
ments, noise, and equipment to name a few. Another point
that should be emphasized is that the rule space via RS theory
is data specific. Addition of new data will change the core in-
formation. The reason for this is the inconsistencies contained
in the data. We believe that RS theory may be used for model-
ing the data at hand, but one must expect gross errors when the
model created henceforth is used for prediction. RS theory
does best where everything else fails: it makes sense of the data
when data contradicts itself. The next work will focus on such
atask that would prove the valor of RSs in a similar application
through an automated data analysis and that would seek ways
to improve the accuracy of the established models.
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APPENDIX A

A.1. Kurtosis

Kurtosis is a characterization tool for the shape of a distribution. If
the tails of the distribution are heavier than for a normal distribution,
then the kurtosis of the distribution is positive. Kurtosis of the distri-
bution is negative when the tails are lighter. A kurtosis of zero is pos-
sible for the normal distribution.

1% e
ﬁi:l(XZ_X)

(%)2 (S —%72)° |

kurtosis =

Table A.1. Drop-rise table of all values in all cases

Case Kurt. CF HD CD ME Breakage
1 C D C R C No
2 C R D R C Yes
3 C C R C C Yes
4 R R C R C No
5 D D C C C No
6 R R C D C Yes
7 C C C C R No
8 C C D C D Yes
9 C C C D C No

10 R R C C C No
11 R R C D C No
12 R R C C C No
13 D D C C R Yes
14 C C R D D Yes
15 C C C D C No
16 C C C R C No
17 C C C R C No
18 R R C C C No
19 R C C C C Yes
20 R R D D C Yes
21 C C C D C No
22 R R C D C No
23 D D C R C No
24 R R C D R No
25 C C C R D Yes
26 C C C D C No
27 C C C D C Yes
28 R R C C C No
29 C C C C D Yes
30 C C C C R Yes
31 C C C R C No
32 R R C C D Yes
33 C C C D R Yes
34 C C C R C No
35 C C C D D Yes
36 C C C D R Yes
37 R C C R D Yes
38 C D C R C No
39 C C C D R Yes

Note: Kurt., kurtosis; CF, crest factor; HD, Hausdorf dimension; CD,
correlation dimension; ME, metric entropy; C, constant; D, drop; R, rise.
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A.2. Crest factor

The crest factor shows the ratio of the peak value of a waveform to its
root mean square (RMS) value. It is defined by a pure number with-
out units. The crest factor is sensitive to the sharp peaks in the wave-
form. The reason for this is that the peaks happen suddenly, so it
does not contain much energy.

crest factor = | oox- P cak
| RMS |

where RMS =

Table A.2. Drop-rise table of all cases in verification set

Case Kurt. CF HD CD ME Breakage
1 D D C R D No
2 R C C R R No
3 C C C C D Yes
4 R C R C R Yes
5 C C C C D No
6 C R C C R No
7 C C C D C Yes
8 C C C R D Yes
9 D D C C C No

10 C C C R R No
11 C C C D C No
12 R R C D D No
13 D C C C R No
14 C C C D R No
15 C C C R R Yes
16 C C C R D Yes
17 D D C R C No
18 C R C C C No
19 R C C D D No
20 C C C R D No
21 D C C C R Yes
22 C C C D D Yes

Note: Kurt., kurtosis; CF, crest factor; HD, Hausdorf dimension; CD,
correlation dimension; ME, metric entropy; D, drop; C, constant; R, rise.
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A.3. Hausdorff dimension

The Hausdorff dimension for a time series s is the number of spheres
with radius €, S(e), required to cover s completely. Clearly, as & gets
smaller, S(e) gets larger. As a limit, if S(e) grows in the same way as
1/eP, ase is squeezed down toward zero, then s has the dimension D:

. log(S(e))
Dle) = ilf(l) —log(e)

A.4. Correlation dimension

The correlation sum is used for the calculation of the correlation
dimension. The correlation sum just counts the pairs (s; s;) whose
distance is smaller than €. In the limit of an infinite amount of
data (N — o0) and for small e, it is expected that C will scale like
a power law; C(g) o< . According to this power law property, a
dimension value D, based on the behavior of a correlation sum,
can be defined as

log C(N,
D) = lim lim 28EWV-8)
g—0N—o ]Og €

A.5. Box-counting dimension

Box counting is the same calculation as in the Hausdorff dimension,
but instead of counting spheres, the boxes, B(e), for covering time
series s are counted:

_ i l02(B())
PO ogee)
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