Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2713
Title: Range identification for nonlinear parameterizable paracatadioptric systems
Authors: Nath,N.
Tatlicioglu,E.
Dawson,D.M.
Keywords: Lyapunov methods
Minmax algorithm
Nonlinear parameterization
Paracatadioptric systems
Range identification
Vision-based estimation
Publisher: Elsevier Ltd.
Source: Nath, N., Tatlıcıoğlu, E., and Dawson, D. M. (2010). Range identification for nonlinear parameterizable paracatadioptric systems. Automatica, 46(7), 1129-1140. doi:10.1016/j.automatica.2010.03.017
Abstract: In this paper, a new range identification technique for a calibrated paracatadioptric system mounted on a moving platform is developed to recover the range information and the three-dimensional (3D) Euclidean coordinates of a static object feature. The position of the moving platform is assumed to be measurable. To identify the unknown range, first, a function of the projected pixel coordinates is related to the unknown 3D Euclidean coordinates of an object feature. This function is nonlinearly parameterized (i.e., the unknown parameters appear nonlinearly in the parameterized model). An adaptive estimator based on a minmax algorithm is then designed to estimate the unknown 3D Euclidean coordinates of an object feature relative to a fixed reference frame which facilitates the identification of range. A Lyapunov-type stability analysis is used to show that the developed estimator provides an estimation of the unknown parameters within a desired precision. Numerical simulation results are presented to illustrate the effectiveness of the proposed range estimation technique. © 2010 Elsevier Ltd. All rights reserved.
URI: https://doi.org/10.1016/j.automatica.2010.03.017
ISSN: 0005-1098
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
2713.pdfMakale813.01 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Nov 22, 2024

WEB OF SCIENCETM
Citations

9
checked on Nov 16, 2024

Page view(s)

308
checked on Nov 25, 2024

Download(s)

220
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.