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a b s t r a c t

In this paper, a new range identification technique for a calibrated paracatadioptric system mounted
on a moving platform is developed to recover the range information and the three-dimensional (3D)
Euclidean coordinates of a static object feature. The position of the moving platform is assumed to be
measurable. To identify the unknown range, first, a function of the projected pixel coordinates is related
to the unknown 3D Euclidean coordinates of an object feature. This function is nonlinearly parameterized
(i.e., the unknown parameters appear nonlinearly in the parameterized model). An adaptive estimator
based on a min–max algorithm is then designed to estimate the unknown 3D Euclidean coordinates
of an object feature relative to a fixed reference frame which facilitates the identification of range. A
Lyapunov-type stability analysis is used to show that the developed estimator provides an estimation
of the unknown parameters within a desired precision. Numerical simulation results are presented to
illustrate the effectiveness of the proposed range estimation technique.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of range identification, the estimation of the
unknown time-varying distance of the object from the camera
along its optical axis, has received noteworthy attention over the
last several years due to its significance in several applications such
as autonomous vehicle navigation, aerial tracking, path planning,
surveillance, etc. These applications require either the range or
the 3D Euclidean coordinates of features of a moving or a static
object to be recovered from their two-dimensional (2D) image
sequence. The range estimation is usually done by mounting a
camera on amoving vehicle such as amobile robot or anunmanned
aerial vehicle (UAV) which captures images of the static objects or
features. However, the use of conventional (perspective) cameras
poses restrictions for some applications because of their limited
field-of-view (FOV).
One efficient way to enhance the FOV is to use mirrors

(spherical, elliptical, hyperboloid, or paraboloid) in conjunction
with conventional cameras, commonly known as catadioptric
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systems (Baker & Nayar, 1999). However, the use of curved
mirrors reduces the resolution and distorts the images to a large
extent. As stated in Hu, Aiken, Gupta, and Dixon (2008), the
distorted image mapping can be dealt with by using computer
vision techniques, but the nonlinearity which is introduced in the
transformation makes it difficult to recover the 3D coordinates
of the object features. Catadioptric systems that have a single
effective viewpoint are known as central catadioptric systems, and
are desirable because they allow a distortion-free reconstruction
of panoramic images (Orghidan, Mouaddib, & Salvi, 2005). A
paracatadioptric system is a special case of central catadioptric
systems which employs a paraboloid mirror along with an
orthographic lens. These systems are advantageous due to the fact
that the paraboloid constant of the mirror and its physical size do
not need to be determined during the calibration. Furthermore,
mirror alignment requirements are relaxed, so the mirror can be
arbitrarily translated enabling the camera to zoom in on a part
of the paraboloid mirror for higher resolution; however, with a
reduced FOV (Baker & Nayar, 1999).
In the past, many researchers have proposed various range

identification techniques for perspective vision systems. Some
of these have utilized the extended Kalman filter (EKF) (Chiuso,
Favaro, Jin, & Soatto, 2002; Kano, Ghosh, & Kanai, 2001; Matthies,
Kanade, & Szeliski, 1989). However, EKF involves linearization of
the nonlinear vision model and requires a priori knowledge of the
noise distribution. To overcome the shortcomings of the linear
model, many researchers focused on utilizing nonlinear system
analysis and estimation tools to develop nonlinear observers to
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identify the rangewhen themotion parameterswere known (Chen
& Kano, 2002, 2004; Dixon, Fang, Dawson, & Flynn, 2003; Jankovic
& Ghosh, 1995; Karagiannis & Astolfi, 2005; Ma, Chen, & Moore,
2004). More recently, in Nath, Braganza, and Dawson (2008a),
the measurement of camera position was utilized to develop an
adaptive estimator to recover the structure; this was extended
in Nath, Braganza, Dawson, and Burg (2008b) to recover the range.
Although there have been several reports on range identi-

fication for perspective vision systems, very few results have
been shown for range identification for catadioptric systems. Ma,
Chen, and Moore (2005) proposed a range identification tech-
nique for paracatadioptric system based on a sequence of lin-
ear approximation-based observers. Gupta, Aiken, Hu, and Dixon
(2006) designed a nonlinear observer to asymptotically identify
the range for a paracatadioptric system. However, both of these
reports assumed the focal point of the paraboloidmirror to be at its
vertex. This assumption was recently relaxed in Hu et al. (2008). In
the current work, we also base our development on a more prac-
tical approach that the focus of the paraboloid mirror is not at its
vertex. In Orghidan et al. (2005), an omnidirectional light projec-
tor was embedded in a paracatadioptric system, and the range was
calculated by triangulation. Hu et al. (2008) developed a nonlin-
ear estimator similar to Dixon et al. (2003) to identify the range
for paracatadioptric systems where the motion parameters were
assumed to be known, and it assumed that the object must trans-
late in at least one direction.
In this paper, we present a method to identify the range of a

static object using a moving paracatadioptric system whose posi-
tion is measurable. For many applications, position measurements
are considerably less noisy than velocity measurements; hence,
we are motivated to develop an estimator based on position mea-
surements. The estimator is designed by first developing a geo-
metric model along with a paracatadioptric projection model that
relates an object feature with the paracatadioptric system
mounted on a moving mechanical system. The novelty of this
work lies in the compensation for nonlinear parameterization of
the model which relates the projected pixel coordinates to the
Euclidean coordinates of the object feature. It should be noted that
contrary to Nath et al. (2008a), where the unknown terms appear
linearly in the parameterized model for a perspective vision sys-
tem, in the current work, the unknown parameters appear nonlin-
early in the model for a paracatadioptric system. This fact makes it
difficult to use a standard adaptive estimator or a gradient based
estimator (Annaswamy, Skantze, & Loh, 1998). The estimator pre-
sented in this paper which facilitates range identification to the
desired precision is based on a min–max optimization algorithm.
We show that the developed estimator identifies the range and
the 3D coordinates of the object feature upon the satisfaction of
a Nonlinear Persistent Excitation (NLPE) condition and is robust to
noise, as demonstrated by the simulation results. The contributions
of this paper are that: (i) the developed estimator utilizes position
measurements instead of velocity measurements, (ii) is continu-
ous, and (iii) provides estimation of unknown parameters within a
desired precision. A preliminary version of this paper has appeared
in Nath, Tatlicioglu, and Dawson (2009a).

2. Model development

2.1. Geometric model

For the development of a geometric relationship between
a moving paracatadioptric system and a stationary object, an
orthogonal coordinate frame, denoted byM, which is centered at
the focal point of the moving paraboloid mirror whose Z-axis is
aligned with the optical axis of the camera, is defined (see Fig. 1).
As shown in Fig. 1, an inertial coordinate frame, denoted by W ,
Fig. 1. Geometric relationships between the stationary object, mechanical system,
and the paracatadioptric system.

and an orthogonal coordinate frame, denoted by B, are defined.
F denotes a static feature on a stationary object. Let the unknown
3D Euclidean coordinates of the object feature be denoted as the
constant θ ∈ R3 relative to the world frame W and m(t) ∈ R3
relative toM be defined as follows

m , [x y z]T . (1)

To relate the coordinate systems, let Rb(t) ∈ SO(3) and xb(t) ∈ R3
denote the measurable rotation matrix and the translation vector,
respectively, from B to W expressed in W . Let Rm ∈ SO(3) and
xm ∈ R3 be the known rotation matrix and the translation vector,
respectively, fromM toB expressed inB.

2.2. Paracatadioptric system projection model

In a paracatadioptric system, a Euclidean point is projected onto
a paraboloidmirror and is then reflected to an orthographic camera
(see Fig. 1); thus, to facilitate the subsequent development, and to
relate the geometric model to the vision system, let the projection
of the object feature on the surface of the paraboloid mirror with
its focus at the origin be denoted by w(t) ∈ R3 relative toM and
defined as follows

w , [u v q]T . (2)

The projection w(t) can be expressed as follows (Geyer &
Daniilidis, 2000)

w =
2f
λ
m =

2f
λ
[x y z]T (3)

where f ∈ R is the known focal length of the mirror and λ(x, y, z)
∈ R is the unknown nonlinear signal defined as follows

λ , −z +
√
x2 + y2 + z2. (4)

It is worthwhile to mention that the use of a paracatadioptric
system results in an orthographic projection from the paraboloid
mirror to the image plane. In other words, the reflected rays are
parallel to the optical axis; thus, the distance from themirror to the
image plane is irrelevant. After utilizing (2) and (3), the projection
can be expressed as follows[
u
v

]
=
2f
λ

[
x
y

]
. (5)
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Fig. 2. SimplexΘs , and hypercubeΘ .

However, whenmeasured from a CCD chip as in any practical case,
[u, v]T is transformed as follows (Geyer & Daniilidis, 2002)

p ,
[
u′

v′

]
= K

[
u
v

]
+ C (6)

where p(t) ∈ R2 are the measured pixel coordinates on the image
plane, K ∈ R2×2 and C ∈ R2 are defined as follows

K ,
[
a1 a2
0 a−11

]
C ,

[
cx
cy

]
(7)

where a21, a2 ∈ R are the aspect ratio and the skew factor,
respectively, and C is the image center. Since a central catadioptric
camera can be calibrated using a single image of three lines (Bar-
reto & Araujo, 2005; Geyer &Daniilidis, 2002), we assume the cam-
era to be calibrated. It is clear from (6) that the coordinates in the
mirror frame, u(t) and v(t), can be obtained from the measured
pixel coordinates as follows

[u v]T = K−1(p− C). (8)

Also, since the paraboloid mirror is rotationally symmetric, q(·) ∈
R can be computed from u(t) and v(t) as follows (Hu et al., 2008)

q =
u2 + v2

4f
− f . (9)

Assumption 1. It is assumed that the object feature is not on the
optical axis i.e., x(t), y(t) 6= 0 simultaneously and thus, λ(·) 6= 0.

3. Nonlinear parameterization of the model

In this section, the parameterization of the nonlinear function
q(·) is presented after relating it to the unknown 3D Euclidean
coordinates of the object feature. From Fig. 1, m(t) can be written
as follows (Nath et al., 2008a)

m = RTm
[
RTb (θ − xb)− xm

]
. (10)

After utilizing (1), the 3D coordinates of the object feature relative
toM can be expressed as follows

x = RTm1
[
RTb (θ − xb)− xm

]
(11)

y = RTm2
[
RTb (θ − xb)− xm

]
(12)

z = RTm3
[
RTb (θ − xb)− xm

]
(13)
where RTmi ∈ R1×3 is the ith row of RTm, and z(t) is the range of
the object feature. After substituting (5) into the nonlinear model
given in (9), q(·) is nonlinearly parameterized (NLP) as follows

q (θ, Rm, xm, Rb, xb, f ) =

( 2f
λ
x
)2
+
( 2f
λ
y
)2

4f
− f . (14)

In the subsequent analysis, q (θ, Rm, xm, Rb, xb, f ) is replaced
by q(θ,Π), where Π(·) ∈ Rn1×n2 , with n1 and n2 being integers,
contains the combinations of known and measurable quantities
(i.e., f , Rm, xm, Rb(t), and xb(t)).

Remark 1. It can be seen from (4), (9) and (11)–(13) that θ
appears nonlinearly in q(·); thus, it is not possible to give an exact
expression for the function Π(·). Specifically, Π(·) is a shorthand
notation forΠ(f , Rm, xm, Rb(t), xb(t)).

Assumption 2. The unknown parameter vector θ is assumed to
belong to a known hypercube Θ ⊂ R3. In other words, the 3D
coordinates of the object feature relative to W are assumed to lie
within their known minimum and maximum values.

Assumption 3. For anyΠ(·), the function q(·) is either concave or
convex on a simplex1 Θs in R3 such thatΘs ⊃ Θ (see Fig. 2).

Assumption 4. The function Π(t) is a bounded, continuous
function of its arguments, and is Lipschitz in t such that

‖Π(t1)−Π(t2)‖ ≤ L1|t1 − t2| ∀t1, t2 ∈ R+ (15)

where L1 ∈ R+ is the Lipschitz constant.

Assumption 5. q(θ0,Π) is Lipschitz with respect to its arguments
such that

|q(θ0 +1θ0,Π +1Π)− q(θ0,Π)| ≤ L2(‖1Π‖ + ‖1θ0‖) (16)

where L2 ∈ R+ is the Lipschitz constant, 1Π = Π(t1) − Π(t2),
and1θ0 = θ0(t1)− θ0(t2).

Definition 1. A function H(ς) is said to be convex on Θ if it
satisfies the following inequality

H (σς1 + (1− σ) ς2) ≤ σH (ς1)+ (1− σ)H (ς2)
∀ς1, ς2 ∈ Θ (17)

and concave if it satisfies the following inequality

H (σς1 + (1− σ) ς2) ≥ σH (ς1)+ (1− σ)H (ς2)
∀ς1, ς2 ∈ Θ (18)

where 0 ≤ σ ≤ 1.

Remark 2. It should be noted that the Assumptions 2 and 3 essen-
tially characterize the nature of the nonlinear parameterization,
and the convexity or concavity of the function q(·) is required in a
regionΘs which is larger than the hypercubeΘ . Also, since an esti-
mation problem for a practical moving paracatadioptric system is
considered in this paper, we assume that the measurable position
signals and its velocity are bounded. The boundedness of the posi-
tion signals in otherwordsmean that the functionΠ(·) is bounded.

Remark 3. In Appendix C, we show how Assumptions 4 and 5 can
be replaced by a simpler condition on the differentiability of q(·)
for the estimation problem.

1 A simplex in Rn is a convex polyhedron having exactly n+ 1 vertices.
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Remark 4. Assumptions 4 and 5 are related to the boundedness of
the motion of the mechatronic platform (i.e., a robot manipulator,
UAV, or a mobile robot, etc.) to which the omnidirectional camera
is attached. Also, the definition of convexity and concavity are
provided in Definition 1. As noted in Boyd and Vandenberghe
(2004), for an affine function, we always have equality in (17)
and (18), respectively. Therefore all affine (and therefore also
linear) functions are both convex and concave. Conversely, any
function that is convex and concave is affine. In Assumption 3,
it is claimed that for any Π(·), q(·) is either convex or concave.
Thus, Assumption 3 is utilized to exclude affine (and also linear)
functions.

Remark 5. The hypercubeΘ can be found using theminimumand
the maximum values of θ . The vertices of the simplexΘs, denoted
by θs1, θs2, θs3, θs4 ∈ R3, can be found by first inscribing Θ in
a 3-dimensional sphere and then inscribing this sphere inside a
4-dimensional polyhedron (Annaswamy et al., 1998; Sommerville,
1958).

It should be noted that in (11)–(13), θ (i.e, the constant
3D coordinates of the object feature relative to W ) is the only
unknown vector, and if we estimate this we can then obtain an
estimation of the 3D coordinates of the object feature relative to
M as follows

x̂ = RTm1[R
T
b (θ̂ − xb)− xm] (19)

ŷ = RTm2[R
T
b (θ̂ − xb)− xm] (20)

ẑ = RTm3[R
T
b (θ̂ − xb)− xm] (21)

where x̂(t), ŷ(t) ∈ R are the estimates of x(t) and y(t), respec-
tively, ẑ(t) ∈ R is the estimate of the corresponding range z(t),
and θ̂ (t) ∈ R3 is the estimate of θ .

Remark 6. It is worthwhile to mention that the range identifi-
cation precision depends on the precision to which the constant
unknown parameter vector θ is estimated. The estimated range,
ẑ(t), further depends upon the noise in the measurable position
signals Rb(t) and xb(t), and the error in the constant camera cali-
bration parameters Rm and xm. The effect of noise in these signals
will be demonstrated later in the simulation section.

4. Range estimation

In this section, an estimator is presented for the unknown con-
stant parameter vector θ which appears nonlinearly in the model
given in (14). There are very few researchers who have addressed
adaptive control or estimation for NLP systems (Annaswamy
et al., 1998; Boskovic, 1996; Fomin, Fradkov, & Yakubovich,
1981; Ortega, 1998). Parameter convergence in NLP systems was
addressed in Cao, Annaswamy, and Kojic (2003). As pointed out
in Annaswamy et al. (1998), the gradient algorithm employed
in Boskovic (1996), Fomin et al. (1981) and Ortega (1998) are not
only inadequate but can also lead to instability for general NLP sys-
tems. In this work, we design an adaptive estimator that facilitates
the identification of range within a desired precision based on the
min–max algorithm developed in Annaswamy et al. (1998). The
maximization is that of a tuning function over all the possible val-
ues of the nonlinear parameters, and the minimization is over all
the possible sensitivity functions that can be used in the adaptive
law. A sensitivity function,which differs from the gradient depend-
ing upon the sign of a tuning error, is incorporated in the adaptive
law. The stability analysis ensures that the use of the tuning func-
tion, along with the adaptive law, has globally bounded error sig-
nals, and upon the satisfaction of an NLPE condition similar to Cao
et al. (2003), the parameter estimation follows; hence, the identi-
fication of range.
4.1. Estimator design

To facilitate the estimator design, the estimate of (14) is defined
as follows

q̂ ,

(
2f
λ̂
x̂
)2
+

(
2f
λ̂
ŷ
)2

4f
− f (22)

where q̂(·) ∈ R denotes q(θ̂), λ̂(x̂, ŷ, ẑ) ∈ R is the estimate of λ(·),
and is defined as follows

λ̂ , −ẑ +
√
x̂2 + ŷ2 + ẑ2. (23)

To further facilitate the development, we define a filter signal
qf (t) ∈ R as follows

q̇f , −αqf + q; qf (0) , 0 (24)

where α ∈ R+. The estimate of (24) is designed as follows
.

q̂f = −α
(
q̂f − ε sat(r)

)
+ q̂− a∗ sat(r) (25)

where q̂f (t),
.

q̂f (t) ∈ R are the estimates of qf (t), and q̇f (t), respec-
tively, ε ∈ R+ is the desired precision, a∗(t) is the tuning function
obtained from the subsequently presented min–max optimization
problem, and r(t) ∈ R is defined as follows

r ,
q̃f
ε

(26)

where the filter error q̃f (t) ∈ R is defined as follows

q̃f , q̂f − qf . (27)

Also, in (25), sat(r) is a saturation function given as follows

sat(r) =

{
+1 if r ≥ 1
r if |r| < 1
−1 if r ≤ −1.

(28)

Toproceedwith thedevelopment,wedefine a tuning error q̃f ε(t) ∈
R as follows

q̃f ε , q̃f − ε sat(r). (29)

After taking the time derivative of (27), the following expression
can be written
.

q̃f = −αq̃f ε + q̂− q− a
∗ sat(r) (30)

where (24), (25) and (29) were utilized.

Remark 7. It should be noted that the inclusion of the tuning error
q̃f ε(t) provides the following expressions

q̃f ε = 0 when
∣∣q̃f ∣∣ ≤ ε

.

q̃f ε =
.

q̃f when
∣∣q̃f ∣∣ > ε.

This remark is utilized later in the stability analysis.

Based on the stability analysis an estimator
.

θ̂ (t) ∈ R3 is
designed with a projection strategy which facilitates the estima-
tion of θ as follows
.

θ̂= Proj{−q̃f εφ∗} (31)

where φ∗(t) ∈ R3 is the sensitivity function. The projection strat-
egy Proj{·} in (31) ensures that θ̂ (t) always belongs to the hyper-
cubeΘ . The strategy is as follows

θ̂j =


θ̂j if θ̂j ∈

[
θj,min, θj,max

]
θj,min if θ̂j < θj,min

θj,max if θ̂j > θj,max

(32)
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where the subscript j denotes the jth element of the corresponding
vector ∀j = 1, 2, 3, and θj,min, θj,max ∈ R are the minimum and
maximum values of the jth component of θ , respectively.
Similar to Annaswamy et al. (1998), the solutions for φ∗(t) and

a∗(t) are obtained from a min–max optimization problem of the
following form

a∗ = min
φ∈R3

max
θ∈Θs

J(φ, θ) (33)

φ∗ = arg min
φ∈R3

max
θ∈Θs

J(φ, θ) (34)

where the performance index J(·) ∈ R is given by the following
expression

J(·) = sat(r)
[
q̂− q− θ̃ Tφ

]
(35)

where θ̃ (t) ∈ R3 is the parameter estimation error defined as
follows

θ̃ , θ̂ − θ. (36)
The solutions of (33) and (34) are given as follows2
(a) when q̃f < 0

a∗ =
{
0 if q is concave onΘs
A1 if q is convex onΘs

(37)

φ∗ =

{
∇q(θ̂) if q is concave onΘs
A2 if q is convex onΘs.

(38)

(b) when q̃f ≥ 0

a∗ =
{
A1 if q is concave onΘs
0 if q is convex onΘs

(39)

φ∗ =

{
A2 if q is concave onΘs
∇q(θ̂) if q is convex onΘs.

(40)

In (37)–(40), A(t) ∈ R4 is given as follows

A = [A1 A2]T = G−1b (41)
where A1(t) ∈ R, and A2(t) ∈ R3, G(t) ∈ R4×4 is given as follows

G =


−1 β(θ̂ − θs1)

T

−1 β(θ̂ − θs2)
T

−1 β(θ̂ − θs3)
T

−1 β(θ̂ − θs4)
T

 (42)

and b(t) ∈ R4 is given as follows

b =


β
(
q̂− qs1

)
β
(
q̂− qs2

)
β
(
q̂− qs3

)
β
(
q̂− qs4

)
 (43)

where β(Π) ∈ R is defined as follows

β =

{
1 if q is convex onΘs
−1 if q is concave onΘs.

(44)

In (43), gsh , q(θsh,Π)∀h = 1, 2, 3, 4. As mentioned earlier in
Remark 5, θsh are the vertices of the simplex Θs. In (38) and (40),
∇q(θ̂) ∈ R3 is the gradient function given as follows

∇q(θ̂) = (∂q/∂θ)|θ=θ̂ . (45)
It is evident that the estimate of the constant 3D coordinates of the
object feature relative to the world frame (i.e., θ̂ (t)) can be used to
obtain the estimates of all its 3D coordinates relative to the vision
system, including the range (i.e., ẑ(t)) from (19)–(21).

2 The reader is referred to Annaswamy et al. (1998) for the proof of the solutions.
Remark 8. It should be noted that the inclusion of the tuning
error q̃f ε(t) with the saturation function sat(r) ensures that the
estimator is continuous, even if a discontinuous solution of the
min–max algorithm is obtained (see Annaswamy et al., 1998 for
more detailed description).

Remark 9. It should be noted that θ̂ (t) is bounded because of the
projection strategy in (32); thus, φ∗(t) can be upper bounded as
follows

‖φ∗(t)‖ ≤ Lφ ∀t ≥ t0 (46)

where Lφ ∈ R+.

Remark 10. We note that the tuning function a(t), the sensitivity
function, and the matrices G(t) and b(t) are similar to the corre-
sponding functions defined in Annaswamy et al. (1998) and Cao
et al. (2003). The novelty in the proposed work lies in the fact that
we have applied a modified version of Annaswamy et al. (1998)
and Cao et al. (2003) for nonlinear parameter estimation applica-
tion (i.e., range identification using paracatadioptic systems). The
work presented in Annaswamy et al. (1998) deals with the control
of a nonlinearly parameterized system, while parameter conver-
gence of a nonlinearly parameterized system is presented in Cao
et al. (2003). In the current paper, we modify the technique given
in Cao et al. (2003) for nonlinearly parameterized parameter esti-
mation, which facilitates the range identification for a paracata-
dioptric system. This modification is accomplished through the
introduction of a filtering scheme which is given in (24).

4.2. Stability analysis

Theorem 1. The adaptive update law given in (31) along with the
solutions of a∗(t) and φ∗(t) given in (37)–(40) ensures that q̃f ε(t) ∈
L2 ∩ L∞; hence, the stability of the estimator, and the global
boundedness of the overall adaptive system are ensured.
Proof. See Appendix A. �

Theorem 2. The developed estimation technique ensures that ‖θ̃ (t)‖
≤
√
γ as t →∞ provided the following NLPE condition holds

β(Π(t2))
(
q(θ̂(t1),Π(t2))− q(θ,Π(t2))

)
≥ εu

∥∥∥θ̂ (t1)− θ∥∥∥ (47)
where

γ =
8εc1
ε2u
; c1 = 4L1L2 + 2L2Lφ + L2φ, (48)

t2 ∈ [t1, t1 + T0], t1 > t0, and T0, εu ∈ R+.
Proof. See Appendix B. �

Remark 11. From the definition of γ in (48), it follows that γ can
be made smaller by choosing smaller ε. As the desired precision
ε → 0, then γ → 0; thus, the parameter estimation error
‖θ̃ (t)‖ → 0.

Remark 12. As pointed out in Cao et al. (2003), it is difficult to
check if the NLPE condition given in (47) can be satisfied in a
general nonlinear system. To ensure parameter convergence,Π(·)
must be such that one of the following occurs at least at one
time instant t2 ∈ [t1, t1 + T ]: (a) For the given θ̃ (t), Π(·) must
change in such a way that the sign of q̂(·) − q(·) is reversed,
while keeping the convexity/concavity of q(·) the same or, (b) for
the given θ̃ (t),Π(·), must reverse the convexity/concavity of q(·),
while preserving the sign of q̂(·) − q(·). The reader is referred
to Cao et al. (2003) for a detailed analysis. It should be noted that
the parameter convergence shown in the subsequently presented
simulation results seems to indicate that theNLPE condition for the
particular problem attacked in this paper was met.
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5. Simulation results

A detailed simulation study was conducted to evaluate the
performance of the proposed estimation technique using the
Mathworks Simulink program. The translation vector xb(t), and
angular rotation qb(t) ∈ R3 (yaw-pitch-roll about x–y–z axes) to
the mechanical system were given as follows
xb = [sin(π t) 2 cos(π t) sin(2π t)]T [m]

qb = [0 0 0.2 cos(π t)]T [rad]. (49)
The measurable signal Rb(t) was generated using qb(t). The 3D
Euclidean coordinates of an object feature relative to the world
frame, θ , were taken as follows

θ = [1 2 2]T [m] (50)
along with the following maximum and minimum values

θmax = [4 4 4]T [m] ; θmin = [0 0 0]T [m]. (51)
The calibration parameters were set as a1 = 1, a2 = 0, and
C = [0 0]T . The rotation matrix Rm, and the translation vector
xm of the paracatadioptric system relative to its mounting frame
were selected as follows

Rm = I3 xm = [0 0 0.1]T [m] (52)
where I3 ∈ R3×3 denotes a standard identity matrix. θmax, and θmin
given in (51) were utilized to find the vertices of the hypercube
Θ , which is a cube in this case with its 8 vertices at [0 0 0]T ,
[0 4 0]T , [0 4 4]T , [0 0 4]T , [4 0 0]T , [4 0 4]T ,
[4 4 4]T , and [4 4 0]T . Hence, a tetrahedron simplex Θs,
enclosing Θ was constructed, as shown in Fig. 2, whose vertices
were given as follows
θs1 = [0 0 0]T θs3 = [16 0 0]T

θs2 = [0 0 8]T θs4 = [0 16 0]T .
Definition 1 was utilized to determine the concavity/convexity
of the function q(·) on Θs. Initializing the estimator as θ̂ (t0) =
[0.5 1 1]T (i.e., 50% of the true values), and setting f = 0.5 along
with the simulation parameters given in (49), (50) and (52), gave
the following initial values
z(t0) = 1.9 [m] ẑ(t0) = 0.9 [m].
The parameterαwas set asα = 5, and εwas selected as ε = 0.001
to make the tuning error q̃f ε(t) introduced in (29) very close to
q̃f (t) so that a high precision for the estimation is obtained.
Two different cases were considered in the simulation study,

without changing any of the above mentioned parameters: case
1 was without any noise and case 2 was with additive-white-
Gaussian-noise (AWGN) injected into the measured coordinates
u(t) and v(t) using the awgn() function of Matlab. A constant
signal-to-noise ratio (SNR) of 20 was maintained. It should be
noted that injection of noise into u(t) and v(t) induces noise into
q(θ,Π); hence, noise in any measurable signal contained in Π(·)
is considered.
Fig. 3 shows θ̂ (t), the estimates of the 3D Euclidean coordinates

of the object feature relative to the world frame, for case 1. The
range estimation error (i.e, z(t)− ẑ(t)) for case 1 is shown in Fig. 4.
It can be seen from these figures that the developed estimation
technique provides an accurate estimation of the range, with an
accurate estimate of the 3D coordinates of the object feature
relative to the world frame. Figs. 5 and 6 show θ̂ (t) and the
range estimation error, respectively in the presence of noise (i.e.,
case 2). It can be inferred from these figures that the proposed
range estimation technique is robust to noisy measurements and
provides good estimates for the constant 3D coordinates of the
object feature relative to the world frame, along with an estimate
of its range. It is worthwhile to note that θ̂ (t) can be used to obtain
other 3D coordinates of the object feature relative toM, x̂(t), ŷ(t)
from (19) and (20), respectively.
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Fig. 3. Simulation case 1: (a) θ̂1(t), (b) θ̂2(t), and (c) θ̂3(t).
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Fig. 6. Simulation case 2: range estimation error z(t)− ẑ(t).

Remark 13. The NLPE condition, given in (47), guarantees the
parameter but it is not clear what role the NLPE condition plays in
the rate of convergence. Furthermore, we note that the simulation
results indicate that the constant parameter α, defined in (24),
can also be tuned to affect the rate of convergence at the cost
of estimation accuracy. In this paper, we primarily focus on
the architecture and the technique to identify the range for a
paracatadioptric system. This technique can be further applied to
anymovingmechanical platformas long as its position andvelocity
signals are continuous, bounded, and the required assumptions are
satisfied.

Remark 14. The initial range and the initial range estimate depend
upon the actual values of the parameters and the initial estimate
of the unknown parameter vector, respectively. If the initial error
is high, the range estimation error will converge more slowly.

6. Conclusion

Anovel technique for range identification and recovering the 3D
Euclidean coordinates of a static object feature with a calibrated
paracatadioptric system mounted on a moving platform with
measurable position was presented. An adaptive estimator for a
nonlinearly parameterized function of projected pixel coordinates
was presented which facilitated the range estimation along with
the estimation of 3D Euclidean coordinates of an object feature. A
Lyapunov-type stability analysis was presented to prove that the
proposed estimator is stable, and ensures global boundedness of
the error signals. Further, the parameter estimation error signals
were shown to be bounded by a desired precision upon satisfaction
of anNLPE condition. Numerical simulation resultswere presented
to demonstrate the efficiency of the developed range identification
technique and its robustness to noise. The results show that
the developed estimator can be used for range identification
for applications with paracatadioptric systems where position
measurements are readily available.

Appendix A. Proof of Theorem 1

Proof. To facilitate the proof,3 a nonnegative Lyapunov function
V (t) ∈ R is defined as follows

V =
1
2
q̃2f ε +

1
2
θ̃ T θ̃ . (A.1)

3 The proof follows the concept outlined in Annaswamy et al. (1998). We include
it in a detailed manner for the sake of completeness.
The time derivative of (A.1) can be obtained as follows

V̇ = q̃f ε
.

q̃f ε + θ̃
T ˙̃θ. (A.2)

After utilizing the time derivative of (36), the expression given in
(A.2) can be written as follows

V̇ = q̃f ε
.

q̃f ε + θ̃
T ˙̂θ. (A.3)

After substituting (31) into (A.3), the following expression is
obtained

V̇ = q̃f ε
.

q̃f ε + θ̃
TProj{−q̃f εφ∗}. (A.4)

It should be noted that an adaptive law with the projection
algorithm defined on a convex set retains all the properties of the
adaptive law without the projection algorithm (Ioannou & Sun,
1996). The projection strategy given in (32) is on the cubeΘ (i.e., a
convex set); hence, the expression given in (A.4) can be written as
follows

V̇ = q̃f ε
.

q̃f ε − θ̃
T q̃f εφ∗. (A.5)

The expression given in (A.5) is rearranged as follows

V̇ = q̃f ε
[ .
q̃f ε − θ̃

Tφ∗
]
. (A.6)

Two different cases are considered, Case I when
∣∣q̃f ∣∣ ≤ ε, and Case

II when ∀
∣∣q̃f ∣∣ > ε.

Case (I) From Remark 7 it follows that

V̇ = 0 ∀
∣∣q̃f ∣∣ ≤ ε. (A.7)

Case (II) Also, from Remark 7 and (A.6), the following expression
can be obtained

V̇ = q̃f ε
[ .
q̃f − θ̃

Tφ∗
]
∀
∣∣q̃f ∣∣ > ε. (A.8)

After substituting (30) into (A.8), the following expression is
obtained

V̇ = q̃f ε
[
−αq̃f ε + q̂− q− a∗ sat(r)− θ̃ Tφ∗

]
. (A.9)

The inequality given in (A.9) can be rearranged as follows

V̇ = −αq̃2f ε + q̃f ε
[
q̂− q− θ̃ Tφ∗ − a∗ sat(r)

]
. (A.10)

Now two distinct sub-cases of Case II are considered: (a) when
q̃f > ε, and (b) when q̃f < −ε.
(a) When q̃f > ε, from (28) and (29) it follows that q̃f ε > 0 and
sat(r) = sgn(q̃f ) = 1. After utilizing (A.10), V̇ (t) can be written as
follows

V̇ = −αq̃2f ε + q̃f ε
[
q̂− q− θ̃ Tφ∗ − a∗

]
. (A.11)

It follows from (A.11) that V̇ (t) ≤ 0 if the following inequality
holds

a∗ ≥ q̂− q− θ̃ Tφ∗ ∀θ ∈ Θs. (A.12)

Therefore, we choose to maximize a∗(t) as follows

a∗ = max
θ∈Θs
[q̂− q− θ̃ Tφ∗] for any φ∗. (A.13)

Since, a∗(t) is like a gain in (30), we seek to find φ∗(t) so that a∗(t)
is minimized; thus, a∗(t) is chosen as follows

a∗ = min
φ∈R3

max
θ∈Θs
[q̂− q− θ̃ Tφ∗]. (A.14)
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(b) When q̃f < −ε, from (28) and (29) it follows that q̃f ε < 0 and
sat(r) = sgn(q̃f ) = −1. After utilizing (A.10), V̇ (t) can be written
as follows

V̇ = −αq̃2f ε + q̃f ε
[
q̂− q− θ̃ Tφ∗ + a∗

]
. (A.15)

From (A.15) it follows that V̇ (t) ≤ 0 if the following inequality
holds

a∗ ≥ q− q̂+ θ̃ Tφ∗ ∀θ ∈ Θs. (A.16)

Following along the same lines as in (a), the following expression
can be written

a∗ = min
φ∈R3

max
θ∈Θs
[q− q̂+ θ̃ Tφ∗]. (A.17)

After combining (A.14) and (A.17), the following expression is
obtained

a∗ = min
φ∈R3

max
θ∈Θs

sat(r)
[
q̂− q− θ̃ Tφ∗

]
. (A.18)

After utilizing (A.12) and (A.16) the following inequality can be
obtained

sat(r)
[
q̂− q− θ̃ Tφ∗

]
− a∗ ≤ 0. (A.19)

The expression given in (A.11) can be rewritten as follows

V̇ = −αq̃2f ε + q̃f εsat(r){sat(r)[q̂− q− θ̃
Tφ∗] − a∗}. (A.20)

Thus, after utilizing (A.19), and the fact that q̃f εsat(r) ≥ 0when∣∣q̃f ∣∣ > ε, V̇ (t) can be upper bounded as follows

V̇ ≤ −αq̃2f ε ∀
∣∣q̃f ∣∣ > ε. (A.21)

After integrating (A.21), the following inequality can be obtained

α

∫
∞

t0
q̃2f ε dτ < V (t0)− V (∞). (A.22)

From (A.1), (A.7) and (A.21), it can be concluded that V (t) ∈ L∞.
From (A.22), it is clear that q̃f ε(t) ∈ L2 ∩ L∞; thus, from (29), it
can be concluded that q̃f (t) ∈ L∞. Since the projection strategy
given in (32) ensures θ̂ (t) ∈ Θs; thus, it follows that θ̂ (t) ∈ L∞.
Hence, from (22), it follows that q̂(·) ∈ L∞. Since a∗(t) is a function
of the bounded signals, and q(·) is a measurable bounded signal,
from (30), it follows that

.

q̃f (t) ∈ L∞. It is clear from the projection

strategy that
.

θ̂ (t) ∈ L∞; thus, from (36),
.

θ̃ (t) ∈ L∞. �

Appendix B. Proof of Theorem 2

Proof. To facilitate the proof,4 without loss of generality, we
assume β (Π (t2)) = 1 i.e., q (θ,Π (t2)) is convex on Θs.5 Thus,
the expression given in (47) can be rewritten as follows

q(θ̂ (t1) ,Π (t2))− q (θ,Π (t2)) ≥ ε̄ (B.1)

where ε̄ = εu
∥∥∥θ̂ (t1)− θ∥∥∥. To further facilitate the proof,we define

a region of convergence as follows

Ωε = {d : V (d) ≤ γ } (B.2)

4 The proof follows the concept outlined in Cao et al. (2003). We include it in a
detailed manner for the sake of completeness.
5 A similar proof can be given if β (Π (t2)) = −1, i.e., q(·) is concave onΘs .
where

d = [q̃f ε θ̃ T ]T (B.3)

and V (·) is the Lyapunov function defined in (A.1).
From the region of convergence, we know that if d (t1) ∈ Ωε

then d (t) for all t ≥ t1 stays inΩε . Also,V (·) is a Lyapunov function
and its time derivative is always non-positive (see Appendix A);
hence, we assume that d(t1) 6∈ Ωε . The proof of this theorem
follows by showing that V (·) decreases by a finite amount over
every interval of time until the trajectories reachΩε .
If d(t1) 6∈ Ωε , from (B.2), it is clear that V (·) > γ . Hence, after

utilizing (A.1), (B.2) and (B.3), V (·) can be expressed as follows

V =
1
2
q̃2f ε +

1
2
θ̃ T θ̃ > γ . (B.4)

From (B.4), it is clear that the following inequalities are not satisfied
simultaneously∣∣q̃f ε (t1)∣∣ < √γ (B.5)∥∥∥θ̃ (t1)∥∥∥ < √γ . (B.6)

It can be seen that if the inequalities given in (B.5) and (B.6) are
satisfied simultaneously, then V (·) ≤ γ , which is not true; thus,
we have three possible cases as follows

1.
∣∣q̃f ε (t1)∣∣ > √γ or

2.
∥∥∥θ̃ (t1)∥∥∥ > √γ or

3.
∣∣q̃f ε (t1)∣∣ > √γ and ∥∥∥θ̃ (t1)∥∥∥ > √γ .

If case 1 or case 3 holds, since
∣∣q̃f ε (t1)∣∣ > √γ , from Property

1 (see Nath, Tatlicioglu, & Dawson, 2009b), it is clear that V (·)
decreases. If case 2 holds, then we show in the following analysis
that |q̃f ε(t)| becomes large for some t > t1 and V (·) decreases.
After taking the square of the right-hand side of (B.1), the

following inequality can be obtained

ε̄2 ≥ ε2uγ . (B.7)

Substituting (48) into (B.7) results in the following inequality

ε̄2 ≥ 8εc1. (B.8)

We show that if (B.8) holds, then there exists a time t3 ∈ [t2, t2+T1]
such that∣∣q̃f ε (t3)∣∣ > min {1, δ̄} (B.9)

where

δ̄ = min
{
ε̄

2c2
,
ε̄2 − 4εc1
2ε̄c2 + 4c1

}
(B.10)

where

c2 = L2BφT0 + α; T1 =
ε̄ − δ̄c2
c1

. (B.11)

We prove by contradiction that (B.9) holds. To facilitate the proof,
we consider the following inequality∣∣q̃f ε (t2 + τ)∣∣ < min {1, δ̄} ∀τ ∈ [0, T1] . (B.12)

The expression given in (30) can be rewritten as follows

˙̃qf (t2 + τ) ≥ −αmin
{
1, δ̄

}
+ q(θ̂ ,Π (t2 + τ))

− q(θ,Π (t2 + τ))− a∗ sat(r) (B.13)
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where (B.12) was utilized. We seek to establish lower bounds for
[q(θ̂ ,Π (t2 + τ)) − q(θ,Π (t2 + τ))] and −a∗ sat(r) in (B.13) in
order to prove that q̃f ε(t) becomes large over [t2, t2 + T1]. From
Assumption 5, it follows that

|q (θ +1θ,Π (t2))− q (θ,Π (t2))| ≤ L2 ‖1θ‖ . (B.14)

After integrating (31) from t1 to t2, the following expression is
obtained

θ̂ (t2)− θ̂ (t1) =
∫ t2

t1
−q̃f ε (σ ) φ∗ (σ ) dσ . (B.15)

After taking the norm on both the sides of (B.15), the following
inequality can be obtained∥∥∥θ̂ (t2)− θ̂ (t1)∥∥∥ ≤ ∫ t2

t1

∥∥q̃f ε (σ )∥∥ ∥∥φ∗ (σ )∥∥ dσ . (B.16)

The left-hand side of (B.16) can be upper bounded as follows∥∥∥θ̂ (t2)− θ̂ (t1)∥∥∥ ≤ min {1, δ̄} LφT0 (B.17)

where (B.12), Remark 9, and the fact that T0 ≥ t2−t1were utilized.
After utilizing (B.14) and (B.17), the following inequality can be
obtained∣∣∣q(θ̂ (t2) ,Π (t2))− q(θ̂ (t1) ,Π (t2))

∣∣∣ ≤ L2min {1, δ̄} LφT0.
(B.18)

From (B.18), it follows that

− L2min
{
1, δ̄

}
LφT0 ≤ q(θ̂ (t2) ,Π (t2))− q(θ̂ (t1) ,Π (t2)).

(B.19)

After adding (B.1) and (B.19), the following expression is obtained

ε̄ − L2min
{
1, δ̄

}
LφT0 ≤ q(θ̂ (t2) ,Π (t2))− q (θ,Π (t2)) . (B.20)

From Assumption 4, it follows that

‖Π (t2 + τ)−Π (t2)‖ ≤ L1τ ∀τ ∈ [0, T1] . (B.21)

Thus, the following inequalities can be obtained

|q (θ,Π (t2 + τ))− q (θ,Π (t2))|
≤ L2 (‖Π (t2 + τ)−Π (t2)‖) (B.22)
≤ L2L1τ . (B.23)

From (B.22) and (B.23), the following expression is obtained

q(θ,Π (t2 + τ))− q(θ,Π (t2)) ≤ L2L1τ (B.24)

which can be rewritten as follows

q(θ,Π (t2))− q(θ,Π (t2 + τ)) ≥ −L2L1τ . (B.25)

After combining (B.17), (B.21), and Assumption 5, the following
expression can be obtained∣∣∣q(θ̂ (t2 + τ) ,Π (t2 + τ))− q(θ̂ (t2) ,Π (t2))

∣∣∣
≤ L2L1τ + L2Lφτ (B.26)

where the fact that min(a, b) ≤ a and min(a, b) ≤ b was utilized.
From (B.26), it follows that

− L2L1τ − L2Lφτ ≤ q(θ̂ (t2 + τ),Π (t2 + τ))

− q(θ̂ (t2) ,Π (t2)). (B.27)
After adding (B.25) and (B.27), the following expression is obtained

− L2
(
2L1 + Lφ

)
τ ≤ q(θ̂ (t2 + τ) ,Π (t2 + τ))
− q(θ,Π (t2 + τ))+ q(θ,Π (t2))

− q(θ̂ (t2) ,Π (t2)). (B.28)

After rearranging (B.28), the following expression can be obtained

− L2
(
2L1 + Lφ

)
τ + q(θ̂ (t2) ,Π (t2))− q(θ,Π (t2))

≤ q(θ̂ (t2 + τ) ,Π (t2 + τ))− q (θ,Π (t2 + τ)) . (B.29)

Utilizing (B.20) and (B.29) results in the following expression

ε̄ − L2min
{
1, δ̄

}
LφT0 − L2

(
2L1 + Lφ

)
τ

≤ q(θ̂ (t2 + τ) ,Π (t2 + τ))− q(θ,Π (t2 + τ)). (B.30)

Thus, a lower bound on the term [q(θ̂ ,Π(t2+τ))−q(θ,Π(t2+τ))]
in (B.13) is established. Now, we seek to find a lower bound on the
term−a∗ sat(r) in (B.13). After changing the variable t2 to t2+τ and
t1 to t2, the expression given in (B.17) can be rewritten as follows∥∥∥θ̂ (t2 + τ)− θ̂ (t2)∥∥∥ ≤ min {1, δ̄} Lφτ . (B.31)

After multiplying (B.31) by φ∗(t2) and utilizing Remark 9, the
following expression is obtained∣∣∣φ∗ (t2) (θ̂ (t2 + τ)− θ̂ (t2))∣∣∣ ≤ min {1, δ̄} L2φτ . (B.32)

From Property 3 (see Nath et al., 2009b), it follows that

a∗
+
(θ̂ (t2) ,Π (t2)) = 0 (B.33)

when β(Π (t2)) = 1 where a∗+(·) denotes a
∗(t)when q̃f ε > 0 (see

Nath et al., 2009b). From (33), the following expression is obtained

a∗
+
(θ̂(t2),Π(t2)) = max{q̂2 − φ∗(t2)(θ̂(t2)− θ)} (B.34)

where

q̂2 = q(θ̂(t2),Π(t2))− q(θ,Π(t2)). (B.35)

At time instant t2+τ , the expression given in (B.34) can bewritten
as follows

a∗
+
(θ̂(t2 + τ),Π(t2 + τ))

= max{q̂2τ − φ∗(t2 + τ)(θ̂(t2 + τ)− θ)} (B.36)

where

q̂2τ = q(θ̂(t2 + τ),Π(t2 + τ))− q(θ,Π(t2 + τ)). (B.37)

Since φ∗(t2 + τ) results in the minimum value of a∗
+
(θ̂(t2 +

τ),Π(t2 + τ)), the left-hand side of (B.36) can be upper bounded
as follows

a∗
+
(θ̂(t2 + τ),Π(t2 + τ))

≤ max{q̂2τ − φ∗(t2)(θ̂(t2 + τ)− θ)}. (B.38)

After adding and subtracting the terms q̂2 and φ∗(t2)θ̂(t2) to
the right-hand side of (B.38), and then simplifying results in the
following expression

a∗
+
(θ̂(t2 + τ),Π(t2 + τ))

≤ max{q̂2τ − q̂2 − φ∗(t2)(θ̂(t2 + τ)− θ̂ (t2))}

+ max{q̂2 − φ∗(t2)(θ̂(t2)− θ)} (B.39)
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where the fact that max(a+ b) ≤ max(a)+max(b) was utilized.
After utilizing (B.34), the expression given in (B.39) can be written
as follows

a∗
+
(θ̂(t2 + τ),Π(t2 + τ)) ≤ max{q̂2τ − q̂2

−φ∗(t2)(θ̂(t2 + τ)− θ̂ (t2))} + a∗+(θ̂(t2),Π(t2)). (B.40)

The expression given in (B.40) can be upper bounded as follows

a∗
+
(θ̂(t2 + τ),Π(t2 + τ)) ≤ max{q̂2τ − q̂2}

+max{−φ∗(t2)(θ̂(t2 + τ)− θ̂ (t2))}

+ a∗
+
(θ̂(t2),Π(t2)). (B.41)

The expression given in (B.41) can be rewritten as follows

a∗
+
(θ̂(t2 + τ),Π(t2 + τ)) ≤ L2

(
2L1 + Lφ

)
τ +min

{
1, δ̄

}
L2φτ
(B.42)

where (B.28), (B.32), (B.33), (B.35) and (B.37) were utilized. Since
min

{
1, δ̄

}
≤ 1, (B.42) can be rewritten as follows

a∗
+
(θ̂(t2 + τ),Π(t2 + τ)) ≤ L2

(
2L1 + Lφ

)
τ + L2φτ

≤
(
2L2L1 + L2Lφ + L2φ

)
τ . (B.43)

The inequality given in (B.43) is rewritten as follows

a∗
+
(θ̂ (t2 + τ) ,Π (t2 + τ))sat(r) ≤

(
2L2L1 + L2Lφ + L2φ

)
τ (B.44)

where the fact that sat(r) ≤ 1 was utilized. After multiplying both
the sides of (B.44) by −1, and utilizing Property 2 (see Nath et al.,
2009b), the lower bound on the term−a∗ sat(r) in (30) is obtained
as follows

− a∗(θ̂ (t2 + τ),Π (t2 + τ)) sat(r)

≥ −(2L2L1 + L2Lφ + L2φ)τ . (B.45)

Now, the expression given in (B.13) can be rewritten as follows

˙̃qf (t2 + τ) ≥ −αmin
{
1, δ̄

}
+ ε̄ − L2min

{
1, δ̄

}
LφT0

−L2
(
2L1 + Lφ

)
τ − (2L2L1 + L2Lφ + L2φ)τ (B.46)

where (B.30) and (B.45) were utilized. After substituting (48) and
(B.11) into (B.46), the following expression can be obtained

˙̃qf (t2 + τ) ≥ ε̄ − c2min
{
1, δ̄

}
− c1τ . (B.47)

Since min
{
1, δ̄

}
≤ δ̄, ˙̃qf (t) can be lower bounded as follows

˙̃qf (t2 + τ) ≥ c3 − c1τ (B.48)

where

c3 = ε̄ − c2δ̄. (B.49)

Integrating both the sides of (B.48) over [0, T1], where T1 is defined
in (B.11) results in the following expression∫ T1

0

˙̃qf (t2 + τ) dτ ≥
(
c3τ −

1
2
c1τ 2

)∣∣∣∣T1
0
. (B.50)

Simplifying the right-hand side of (B.50) results in the following
expression(
c3τ −

1
2
c1τ 2

)∣∣∣∣T1
0
=
1
2
c23
c1

(B.51)
where (B.11) was utilized. After performing a change of variable
ρ = t2+τ on the left-hand side of (B.50), the following expressions
can be obtained∫ T1

0

˙̃qf (t2 + τ) dτ =
∫ t2+T1

t2

˙̃qf (ρ) dρ (B.52)

= q̃f (ρ)
∣∣t2+T1
t2

(B.53)

= q̃f (t2 + T1)− q̃f (t2) . (B.54)

After combining (B.51) and (B.54), the expression given in (B.51)
can be rewritten as follows

q̃f (t2 + T1)− q̃f (t2) ≥
1
2
c23
c1
. (B.55)

Taking τ = 0 in (B.12) results in the following expression

−min
{
1, δ̄

}
< q̃f ε (t2) < min

{
1, δ̄

}
. (B.56)

The inequality given in (B.56) can be rewritten as follows

− ε −min
{
1, δ̄

}
< q̃f (t2) < ε +min

{
1, δ̄

}
(B.57)

where (29) was utilized. After substituting (B.57) into (B.55), the
following inequality can be written

q̃f (t2 + T1) ≥
c23
2c1
− ε −min

{
1, δ̄

}
. (B.58)

Since min(a, b) ≤ a and min(a, b) ≤ b, from the definition of δ̄
given in (B.10), the following inequality can be obtained

δ̄ ≤
ε̄2 − 4εc1
2ε̄c2 + 4c1

. (B.59)

After multiplying both the sides of (B.59) by the term (2ε̄c2+ 4c1),
the following inequalities can be obtained

2δ̄ε̄c2 + 4δ̄c1 ≤ ε̄2 − 4εc1
4c1

(
δ̄ + ε

)
≤ ε̄2 − 2δ̄ε̄c2

2
(
δ̄ + ε

)
≤
ε̄2 − 2δ̄ε̄c2
2c1

. (B.60)

After adding and subtracting the term
(
δ̄c2
)2
to the right-hand side

of (B.60) results in the following expressions

ε̄2 − 2δ̄ε̄c2
2c1

=
ε̄2 − 2δ̄ε̄c2 +

(
δ̄c2
)2
−
(
δ̄c2
)2

2c1

=

(
ε̄ − δ̄c2

)2
−
(
δ̄c2
)2

2c1

=
c23 −

(
δ̄c2
)2

2c1
. (B.61)

After utilizing (B.60) and (B.61), the following inequality can be
obtained(
δ̄c2
)2

2c1
+ 2

(
δ̄ + ε

)
≤
c23
2c1

. (B.62)

After utilizing (B.62), the inequality given in (B.58) can be written
as follows

q̃f (t2 + T1) ≥

(
δ̄c2
)2

2c1
+ 2

(
δ̄ + ε

)
− ε −min

{
1, δ̄

}
≥

(
δ̄c2
)2

2c1
+ δ̄ + ε + δ̄ −min

{
1, δ̄

}
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≥

(
δ̄c2
)2

2c1
+ δ̄ + ε

≥ δ̄ + ε. (B.63)

From (29), it can be seen that the expression given in (B.63) implies
that q̃f ε ≥ δ̄, which contradicts (B.12); thus, it can be easily
concluded that (B.9) must hold.
Thus, it was shown that if V (t1) > γ , then one of the following

inequalities hold

|q̃f ε(t3)| ≥ δmin
{
1, δ̄

}
∀t3 ∈ [t1, t1 + T0 + T1] (B.64)

|q̃f ε(t1)| >
√
γ . (B.65)

From Property 1 (see Nath et al., 2009b), it follows that if (B.64)
holds, then

V (t3 + T ′1) ≤ V (t3)−
αδ3

3(M + αδ)
(B.66)

where T ′1 = δ/(M + αδ). Similarly, if (B.65) holds, from Property 1
(see Nath et al., 2009b), it follows that

V (t1 + T ′2) ≤ V (t1)−
α
√
γ 3

3(M + α
√
γ )

(B.67)

where T ′2 =
√
γ /(M +αδ). Since V (t) is a nonincreasing function,

the following expression can be concluded from (B.66) and (B.67)

V (t1 + T ′3) ≤ V (t1)−1V ∀V (t1) > γ (B.68)

where

T ′3 = max
{
T0 + T1 + T ′1, T0 + T1 + T

′

2

}
1V = min

{
αδ3

3(M + αδ)
,

α
√
γ 3

3(M + α
√
γ )

}
.

Thus, it is clear from (B.68) that V (t) decreases by a finite amount
over every interval T ′3 until trajectories reachΩε; hence, from (A.1),
(B.2) and (B.3), it follows that ‖θ̃ (t)‖ ≤

√
γ as t →∞. �

Appendix C. Validity of Assumptions 4 and 5

Assumptions 4 and5 are technical assumptions that are used for
the proof of convergence as given in Cao et al. (2003). In general, it
is not possible to ascertainwhether these assumptions are realistic
for the problem attacked in this paper; however, in this appendix
we give an argument which gives confidence that the assumptions
have some validity with regard to the estimation problem.
To facilitate the validity argument, we add and subtract q(θ0 +

1θ0,Π) to the left-hand side of (16) to obtain the following
expression
|q(θ0 +1θ0,Π +1Π)− q(θ0,Π)| = |q(θ0 +1θ0,Π +1Π)
− q(θ0 +1θ0,Π)+ q(θ0 +1θ0,Π)− q(θ0,Π)|. (C.1)

The left-hand side of (C.1) can be upper bounded as follows
|q(θ0 +1θ0,Π +1Π)− q(θ0,Π)| ≤ |q(θ0 +1θ0,Π +1Π)
− q(θ0 +1θ0,Π)| + |q(θ0 +1θ0,Π)− q(θ0,Π)| (C.2)

where the triangle inequality was utilized. After utilizing themean
value theorem (Khalil, 2002), the terms on the right-hand side of
(C.2) can be written as follows
q(θ0 +1θ0,Π +1Π)− q(θ0 +1θ0,Π)

=
∂q(θ0 +1θ0, υ1)

∂υ1

∣∣∣∣
υ1=ψ1

(Π +1Π −Π) (C.3)

whereψ1 ∈ [Π,Π +1Π] and can be chosen asψ1 = Π +1Π −
ρ1(Π +1Π −Π)with ρ1 ∈ [0, 1] and
q(θ0 +1θ0,Π)− q(θ0,Π)

=
∂q(υ2,Π)
∂υ2

∣∣∣∣
υ2=ψ2

(θ0 +1θ0 − θ0) (C.4)

whereψ2 ∈ [θ0, θ0+1θ0] and can be chosen asψ2 = θ0+1θ0−
ρ2(θ0 + 1θ0 − θ0) with ρ2 ∈ [0, 1]. From (11)–(14), it can be
seen that q(·) is differentiable with respect to its arguments. Also,
since the measurable position signals are assumed to be bounded
(see Remark 2), we can utilize (C.2)–(C.4) to obtain the following
expression
|q(θ0 +1θ0,Π +1Π)− q(θ0,Π)| ≤ L2(‖1Π‖ + ‖1θ0‖) (C.5)
where L2 ∈ R is a positive constant. The expression given in (C.5)
is same as the expression given in (16) in Assumption 5.
Similar argument can be given to show the validity of

Assumption 4. To facilitate the argument, we define t1 ∈ R as
t1 ≤ t1 ≤ t2. After utilizing themean value theorem, the following
expression can be obtained

Π(t2)−Π(t1) = Π̇(t1) (t2 − t1) . (C.6)
The left-hand side of (C.6) can be upper bounded as follows

‖Π(t2)−Π(t1)‖ ≤ ‖Π̇(t1)‖| (t2 − t1) |. (C.7)
Since the position and velocity of themoving platform are assumed
to be bounded then Π̇(t1) is bounded; hence, (C.7) can be written
as follows
‖Π(t1)−Π(t2)‖ ≤ L1|t1 − t2| (C.8)
where L1 ∈ R is a positive constant. It can be seen that (C.8) is the
same expression as given in (15) in Assumption 4.
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