Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2622
Title: Q-analog of shock soliton solution
Authors: Nalcı, Şengül
Pashaev, Oktay
Keywords: Special functions
Integrable systems
Solitons
Burgers equation
Publisher: IOP Publishing Ltd.
Source: Nalcı, Ş., and Pashaev, O. (2010). Q-analog of shock soliton solution. Journal of Physics A: Mathematical and Theoretical, 43(44). doi:10.1088/1751-8113/43/44/445205
Abstract: Based on Jackson's q-exponential function, we introduce a q-analog of Hermite and Kampe de Feriet polynomials. It allows us to introduce and solve the q-heat equation in terms of q-Kampe de Feriet polynomials with arbitrary number of moving zeros, and to find an operator solution for the initial value problem. By the q-analog of Cole-Hopf transformation we find a new q-Burgers-type nonlinear heat equation with cubic nonlinearity, such that in the q → 1 limit it reduces to the standard Burgers equation. We construct exact solutions for the q-Burgers equation in the form of moving poles, singular and regular q-shock soliton solutions. A novel, self-similarity property of the stationary q-shock soliton solution is found. © 2010 IOP Publishing Ltd.
URI: http://doi.org/10.1088/1751-8113/43/44/445205
http://hdl.handle.net/11147/2622
ISSN: 1751-8113
1751-8121
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
2622.pdfMakale166.3 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Nov 22, 2024

WEB OF SCIENCETM
Citations

10
checked on Nov 9, 2024

Page view(s)

758
checked on Nov 18, 2024

Download(s)

232
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.