Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2622
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNalcı, Şengül-
dc.contributor.authorPashaev, Oktay-
dc.date.accessioned2016-12-14T11:34:24Z-
dc.date.available2016-12-14T11:34:24Z-
dc.date.issued2010-11-
dc.identifier.citationNalcı, Ş., and Pashaev, O. (2010). Q-analog of shock soliton solution. Journal of Physics A: Mathematical and Theoretical, 43(44). doi:10.1088/1751-8113/43/44/445205en_US
dc.identifier.issn1751-8113-
dc.identifier.issn1751-8121-
dc.identifier.urihttp://doi.org/10.1088/1751-8113/43/44/445205-
dc.identifier.urihttp://hdl.handle.net/11147/2622-
dc.description.abstractBased on Jackson's q-exponential function, we introduce a q-analog of Hermite and Kampe de Feriet polynomials. It allows us to introduce and solve the q-heat equation in terms of q-Kampe de Feriet polynomials with arbitrary number of moving zeros, and to find an operator solution for the initial value problem. By the q-analog of Cole-Hopf transformation we find a new q-Burgers-type nonlinear heat equation with cubic nonlinearity, such that in the q → 1 limit it reduces to the standard Burgers equation. We construct exact solutions for the q-Burgers equation in the form of moving poles, singular and regular q-shock soliton solutions. A novel, self-similarity property of the stationary q-shock soliton solution is found. © 2010 IOP Publishing Ltd.en_US
dc.description.sponsorshipTÜBİTAK and Izmir Institute of Technologyen_US
dc.language.isoenen_US
dc.publisherIOP Publishing Ltd.en_US
dc.relation.ispartofJournal of Physics A: Mathematical and Theoreticalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSpecial functionsen_US
dc.subjectIntegrable systemsen_US
dc.subjectSolitonsen_US
dc.subjectBurgers equationen_US
dc.titleQ-analog of shock soliton solutionen_US
dc.typeArticleen_US
dc.authoridTR57807en_US
dc.authoridTR57865en_US
dc.institutionauthorNalcı, Şengül-
dc.institutionauthorPashaev, Oktay-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume43en_US
dc.identifier.issue44en_US
dc.identifier.wosWOS:000283300800014en_US
dc.identifier.scopus2-s2.0-78649650727en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1088/1751-8113/43/44/445205-
dc.relation.doi10.1088/1751-8113/43/44/445205en_US
dc.coverage.doi10.1088/1751-8113/43/44/445205en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2622.pdfMakale166.3 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

10
checked on Nov 9, 2024

Page view(s)

758
checked on Nov 18, 2024

Download(s)

232
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.