Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/2616
Title: | Particulate sol route hydroxyapatite thin Film-silk protein interface interactions | Authors: | Özcan, Selçuk Çiftçioğlu, Muhsin |
Keywords: | Film preparation Vapor deposition Agglomeration Thin films Hydroxyapatite Protein adsorption |
Publisher: | Gazi Üniversitesi | Source: | Özcan, S., and Çiftçioğlu, M. (2010). Particulate sol route hydroxyapatite thin Film-silk protein interface interactions. Gazi University Journal of Science, 23(4), 475-485. | Abstract: | Hydroxyapatite (HAp) thin film coatings were prepared on bioinert glass slides by a particulate sol method and the effects of intermediate silk fibroin and silk sericin coatings on the HAp film formation and surface topography were examined. The films prepared with smaller crushed particle sols had a higher agglomeration tendency during the drying consolidation step of the thin film formation, and contained agglomerates larger in number and size, which was demonstrated experimentally and in accordance with the DLVO theory. In the thin films prepared on intermediate sericin and fibroin films the number and size of agglomerates were decisively reduced, forming homogeneous films of predominantly primary particles, especially for the larger particle size sols. The regular surface electrostatic potential arrangements of the β-sheet structures of the sericin and fibroin, and of hydroxyapatite crystals, gave rise to the coulombic attraction driven surface energy minimization, enhancing the hydroxyapatite thin film formation process. The positive degree of cooperativity in the hydroxyapatite particle deposition on the silk protein coatings was disrupted by the particle agglomeration tendency. | URI: | http://hdl.handle.net/11147/2616 | ISSN: | 1303-9709 |
Appears in Collections: | Chemical Engineering / Kimya Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
3
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
3
checked on Nov 9, 2024
Page view(s)
1,392
checked on Nov 18, 2024
Download(s)
122
checked on Nov 18, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.