Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2523
Title: Rad-supplemented modules
Authors: Büyükaşık, Engin
Mermut, Engin
Özdemir, Salahattin
Keywords: Relative homological algebra
R-modules
General module theory
Local rings
Publisher: Universita di Padova
Source: Büyükaşık, E., Mermut, E., and Özdemir, S. (2010). Rad-supplemented modules. Mathematical Journal of the University of Padova, 124, 157-177. doi:10.4171/RSMUP/124-10
Abstract: Let τ be a radical for the category of left R-modules for a ring R. If M is a τ-coatomic module, that is, if M has no nonzero τ-torsion factor module, then τ(M) is small in M. If V is a τ-supplement in M, then the intersection of V and τ(M) is τ(V). In particular, if V is a Rad-supplement in M, then the intersection of V and Rad(M) is Rad(V). A module M is τ-supplemented if and only if the factor module of M by P τ(M) is τ-supplemented where P τ(M) is the sum of all τ-torsion submodules of M. Every left R-module is Rad-supplemented if and only if the direct sum of countably many copies of R is a Rad-supplemented left R-module if and only if every reduced left R-module is supplemented if and only if R/P(R) is left perfect where P(R) is the sum of all left ideals I of R such that Rad I = I. For a left duo ring R, R is a Rad-supplemented left R-module if and only if R/P(R) is semiperfect. For a Dedekind domain R, an R-module M is Rad-supplemented if and only if M/D is supplemented where D is the divisible part of M.
URI: http://doi.org/10.4171/RSMUP/124-10
http://hdl.handle.net/11147/2523
ISSN: 0041-8994
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
2523.pdfMakale205.01 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

23
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

21
checked on Nov 16, 2024

Page view(s)

306
checked on Nov 18, 2024

Download(s)

360
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.