Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2523
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBüyükaşık, Engin-
dc.contributor.authorMermut, Engin-
dc.contributor.authorÖzdemir, Salahattin-
dc.date.accessioned2016-11-25T11:45:36Z-
dc.date.available2016-11-25T11:45:36Z-
dc.date.issued2010-
dc.identifier.citationBüyükaşık, E., Mermut, E., and Özdemir, S. (2010). Rad-supplemented modules. Mathematical Journal of the University of Padova, 124, 157-177. doi:10.4171/RSMUP/124-10en_US
dc.identifier.issn0041-8994-
dc.identifier.urihttp://doi.org/10.4171/RSMUP/124-10-
dc.identifier.urihttp://hdl.handle.net/11147/2523-
dc.description.abstractLet τ be a radical for the category of left R-modules for a ring R. If M is a τ-coatomic module, that is, if M has no nonzero τ-torsion factor module, then τ(M) is small in M. If V is a τ-supplement in M, then the intersection of V and τ(M) is τ(V). In particular, if V is a Rad-supplement in M, then the intersection of V and Rad(M) is Rad(V). A module M is τ-supplemented if and only if the factor module of M by P τ(M) is τ-supplemented where P τ(M) is the sum of all τ-torsion submodules of M. Every left R-module is Rad-supplemented if and only if the direct sum of countably many copies of R is a Rad-supplemented left R-module if and only if every reduced left R-module is supplemented if and only if R/P(R) is left perfect where P(R) is the sum of all left ideals I of R such that Rad I = I. For a left duo ring R, R is a Rad-supplemented left R-module if and only if R/P(R) is semiperfect. For a Dedekind domain R, an R-module M is Rad-supplemented if and only if M/D is supplemented where D is the divisible part of M.en_US
dc.language.isoenen_US
dc.publisherUniversita di Padovaen_US
dc.relation.ispartofMathematical Journal of the University of Padovaen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRelative homological algebraen_US
dc.subjectR-modulesen_US
dc.subjectGeneral module theoryen_US
dc.subjectLocal ringsen_US
dc.titleRad-supplemented modulesen_US
dc.typeArticleen_US
dc.authoridTR130906en_US
dc.authoridTR143944en_US
dc.authoridTR124180en_US
dc.institutionauthorBüyükaşık, Engin-
dc.departmentIzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume124en_US
dc.identifier.startpage157en_US
dc.identifier.endpage177en_US
dc.identifier.wosWOS:000286918500010en_US
dc.identifier.scopus2-s2.0-84856170758en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.4171/RSMUP/124-10-
dc.relation.doi10.4171/RSMUP/124-10en_US
dc.coverage.doi10.4171/RSMUP/124-10en_US
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.cerifentitytypePublications-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2523.pdfMakale205.01 kBAdobe PDFThumbnail
View/Open
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

12
checked on Dec 11, 2021

Page view(s)

42
checked on Jan 17, 2022

Download(s)

86
checked on Jan 17, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.