Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/2492
Title: | Predicting suspended sediment loads and missing data for Gediz River, Turkey | Authors: | Ülke, Aslı Tayfur, Gökmen Özkul, Sevinç |
Keywords: | Fuzzy sets Hydrologic data Hydrologic models Regression analysis Suspended sediment Flow measurement |
Publisher: | American Society of Civil Engineers (ASCE) | Source: | Ülke, A., Tayfur, G., and Özkul, S. (2009). Predicting suspended sediment loads and missing data for Gediz River, Turkey. Journal of Hydrologic Engineering, 14(9), 954-965. doi:10.1061/(ASCE)HE.1943-5584.0000060 | Abstract: | Prediction of suspended sediment load (SSL) is important for water resources quantity and quality studies. The SSL of a stream is generally determined by direct measurement of the suspended sediment concentration or by employing sediment rating curve method. Although direct measurement is the most reliable method, it is very expensive, time consuming, and, in many instances, problematic for inaccessible sections, especially during floods. On the other hand, measuring precipitation and flow discharge is relatively easier and hence, there are more rain and flow gauging stations than SSL gauging stations in Turkey. Furthermore, due to its cost, measurements of SSL are carried out in longer periods compared to precipitation and flow measurements. Although daily precipitation and flow measurements are available for most of the Turkish river basins, at best semimonthly measurements are available for SSL. As such, it is essential to predict SSL from precipitation and flow data and to fill the gap for the missing data records. This study employed artificial intelligence methods of artificial neural networks (ANN) and neurofuzzy inference system, the sediment rating curve method, multilinear regression, and multinonlinear regression methods for this purpose. The comparative analysis of the results showed that the artificial intelligence methods have superiority over the other methods for predicting semimonthly suspended sediment loads. The ANN using conjugate gradient optimization method showed the best performance among the proposed models. It also satisfactorily generated daily SSL data for the missing period record of Gediz River, Turkey. | URI: | http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000060 http://hdl.handle.net/11147/2492 |
ISSN: | 1084-0699 0733-9429 |
Appears in Collections: | Civil Engineering / İnşaat Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection Sürdürülebilir Yeşil Kampüs Koleksiyonu / Sustainable Green Campus Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
42
checked on Nov 23, 2024
WEB OF SCIENCETM
Citations
35
checked on Nov 16, 2024
Page view(s)
264
checked on Nov 18, 2024
Download(s)
400
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.