Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2492
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜlke, Aslı-
dc.contributor.authorTayfur, Gökmen-
dc.contributor.authorÖzkul, Sevinç-
dc.date.accessioned2016-11-22T09:28:26Z
dc.date.available2016-11-22T09:28:26Z
dc.date.issued2009
dc.identifier.citationÜlke, A., Tayfur, G., and Özkul, S. (2009). Predicting suspended sediment loads and missing data for Gediz River, Turkey. Journal of Hydrologic Engineering, 14(9), 954-965. doi:10.1061/(ASCE)HE.1943-5584.0000060en_US
dc.identifier.issn1084-0699
dc.identifier.issn0733-9429-
dc.identifier.urihttp://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000060
dc.identifier.urihttp://hdl.handle.net/11147/2492
dc.description.abstractPrediction of suspended sediment load (SSL) is important for water resources quantity and quality studies. The SSL of a stream is generally determined by direct measurement of the suspended sediment concentration or by employing sediment rating curve method. Although direct measurement is the most reliable method, it is very expensive, time consuming, and, in many instances, problematic for inaccessible sections, especially during floods. On the other hand, measuring precipitation and flow discharge is relatively easier and hence, there are more rain and flow gauging stations than SSL gauging stations in Turkey. Furthermore, due to its cost, measurements of SSL are carried out in longer periods compared to precipitation and flow measurements. Although daily precipitation and flow measurements are available for most of the Turkish river basins, at best semimonthly measurements are available for SSL. As such, it is essential to predict SSL from precipitation and flow data and to fill the gap for the missing data records. This study employed artificial intelligence methods of artificial neural networks (ANN) and neurofuzzy inference system, the sediment rating curve method, multilinear regression, and multinonlinear regression methods for this purpose. The comparative analysis of the results showed that the artificial intelligence methods have superiority over the other methods for predicting semimonthly suspended sediment loads. The ANN using conjugate gradient optimization method showed the best performance among the proposed models. It also satisfactorily generated daily SSL data for the missing period record of Gediz River, Turkey.en_US
dc.language.isoenen_US
dc.publisherAmerican Society of Civil Engineers (ASCE)en_US
dc.relation.ispartofJournal of Hydrologic Engineeringen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFuzzy setsen_US
dc.subjectHydrologic dataen_US
dc.subjectHydrologic modelsen_US
dc.subjectRegression analysisen_US
dc.subjectSuspended sedimenten_US
dc.subjectFlow measurementen_US
dc.titlePredicting suspended sediment loads and missing data for Gediz River, Turkeyen_US
dc.typeArticleen_US
dc.authoridTR2054en_US
dc.institutionauthorTayfur, Gökmen-
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.identifier.volume14en_US
dc.identifier.issue9en_US
dc.identifier.startpage954en_US
dc.identifier.endpage965en_US
dc.identifier.wosWOS:000269061800007en_US
dc.identifier.scopus2-s2.0-69249148310en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1061/(ASCE)HE.1943-5584.0000060-
dc.relation.doi10.1061/(ASCE)HE.1943-5584.0000060en_US
dc.coverage.doi10.1061/(ASCE)HE.1943-5584.0000060en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.dept03.03. Department of Civil Engineering-
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Sürdürülebilir Yeşil Kampüs Koleksiyonu / Sustainable Green Campus Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2492.pdfMakale601.27 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

42
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

35
checked on Nov 16, 2024

Page view(s)

264
checked on Nov 18, 2024

Download(s)

400
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.