Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/2484
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gürdeniz, Gözde | - |
dc.contributor.author | Özen, Fatma Banu | - |
dc.date.accessioned | 2016-11-21T13:33:17Z | |
dc.date.available | 2016-11-21T13:33:17Z | |
dc.date.issued | 2009-09 | |
dc.identifier.citation | Gürdeniz, G., and Özen, B. (2009). Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chemistry, 116(2), 519-525. doi:10.1016/j.foodchem.2009.02.068 | en_US |
dc.identifier.issn | 0308-8146 | |
dc.identifier.issn | 0308-8146 | - |
dc.identifier.uri | http://dx.doi.org/10.1016/j.foodchem.2009.02.068 | |
dc.identifier.uri | http://hdl.handle.net/11147/2484 | |
dc.description.abstract | This study focuses on the detection and quantification of extra-virgin olive oil adulteration with different edible oils using mid-infrared (IR) spectroscopy with chemometrics. Mid-IR spectra were manipulated with wavelet compression previous to principal component analysis (PCA). Detection limit of adulteration was determined as 5% for corn-sunflower binary mixture, cottonseed and rapeseed oils. For quantification of adulteration, mid-IR spectral data were manipulated with orthogonal signal correction (OSC) and wavelet compression before partial least square (PLS) analysis. The results revealed that models predict the adulterants, corn-sunflower binary mixture, cottonseed and rapeseed oils, in olive oil with error limits of 1.04, 1.4 and 1.32, respectively. Furthermore, the data were analysed with a general PCA model and PLS discriminant analysis (PLS-DA) to observe the efficiency of the model to detect adulteration regardless of the type of adulterant oil. In this case, detection limit for adulteration is determined as 10%. | en_US |
dc.description.sponsorship | EU Marie Curie Reintegration Grant CODA (MIRG-CT-2005-029134) | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd. | en_US |
dc.relation.ispartof | Food Chemistry | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Adulteration | en_US |
dc.subject | Chemometrics | en_US |
dc.subject | Mid-infrared spectroscopy | en_US |
dc.subject | Olive oil | en_US |
dc.title | Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data | en_US |
dc.type | Article | en_US |
dc.authorid | TR44768 | en_US |
dc.institutionauthor | Gürdeniz, Gözde | - |
dc.institutionauthor | Özen, Fatma Banu | - |
dc.department | İzmir Institute of Technology. Food Engineering | en_US |
dc.identifier.volume | 116 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 519 | en_US |
dc.identifier.endpage | 525 | en_US |
dc.identifier.wos | WOS:000266660200019 | en_US |
dc.identifier.scopus | 2-s2.0-67349256889 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1016/j.foodchem.2009.02.068 | - |
dc.relation.doi | 10.1016/j.foodchem.2009.02.068 | en_US |
dc.coverage.doi | 10.1016/j.foodchem.2009.02.068 | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosqualityttp | Top10% | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 03.08. Department of Food Engineering | - |
Appears in Collections: | Food Engineering / Gıda Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
249
checked on Nov 23, 2024
WEB OF SCIENCETM
Citations
221
checked on Nov 23, 2024
Page view(s)
740
checked on Nov 25, 2024
Download(s)
1,078
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.