Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2392
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPashaev, Oktay-
dc.contributor.authorYılmaz, Oğuz-
dc.date.accessioned2016-11-08T09:44:06Z
dc.date.available2016-11-08T09:44:06Z
dc.date.issued2008-04
dc.identifier.citationPashaev, O., and Yılmaz, O. (2008). Vortex images and q-elementary functions. Journal of Physics A: Mathematical and Theoretical, 41(13). doi:10.1088/1751-8113/41/13/135207en_US
dc.identifier.issn1751-8113
dc.identifier.issn1751-8113-
dc.identifier.issn1751-8121-
dc.identifier.urihttp://doi.org/10.1088/1751-8113/41/13/135207
dc.identifier.urihttp://hdl.handle.net/11147/2392
dc.description.abstractIn the present paper, the problem of vortex images in the annular domain between two coaxial cylinders is solved by the q-elementary functions. We show that all images are determined completely as poles of the q-logarithmic function, and are located at sites of the q-lattice, where a dimensionless parameter q = r 2 2/r 2 1 is given by the square ratio of the cylinder radii. The resulting solution for the complex potential is represented in terms of the Jackson q-exponential function. Our approach in this paper provides an efficient path to rediscover known solutions for the vortex-cylinder pair problem and yields new solutions as well. By composing pairs of q-exponents to the first Jacobi theta function and conformal mapping to a rectangular domain we show that our solution coincides with the known one, obtained before by elliptic functions. The Schottky-Klein prime function for the annular domain is factorized explicitly in terms of q-exponents. The Hamiltonian, the Kirchhoff-Routh and the Green functions are constructed. As a new application of our approach, the uniformly rotating exact N-vortex polygon solutions with the rotation frequency expressed in terms of q-logarithms at Nth roots of unity are found. In particular, we show that a single vortex orbits the cylinders with constant angular velocity, given as the q-harmonic series. Vortex images in two particular geometries with only one cylinder as the q → ∞ limit are studied in detail.en_US
dc.language.isoenen_US
dc.publisherIOP Publishing Ltd.en_US
dc.relation.ispartofJournal of Physics A: Mathematical and Theoreticalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGroup theoryen_US
dc.subjectSpecial functionsen_US
dc.subjectBoundary-value problemsen_US
dc.subjectElectrostaticsen_US
dc.subjectVortex dynamicsen_US
dc.titleVortex images and q-elementary functionsen_US
dc.typeArticleen_US
dc.authoridTR57865en_US
dc.authoridTR1568en_US
dc.institutionauthorPashaev, Oktay-
dc.institutionauthorYılmaz, Oğuz-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume41en_US
dc.identifier.issue13en_US
dc.identifier.wosWOS:000254153200011en_US
dc.identifier.scopus2-s2.0-42649112027en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1088/1751-8113/41/13/135207-
dc.relation.doi10.1088/1751-8113/41/13/135207en_US
dc.coverage.doi10.1088/1751-8113/41/13/135207en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2392.pdfMakale (Article)256.21 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

15
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

14
checked on Nov 9, 2024

Page view(s)

3,548
checked on Nov 18, 2024

Download(s)

428
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.