Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2291
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSütçü, Mücahit-
dc.contributor.authorAkkurt, Sedat-
dc.date.accessioned2016-10-20T09:02:59Z
dc.date.available2016-10-20T09:02:59Z
dc.date.issued2007
dc.identifier.citationSütçü, M., and Akkurt, S. (2007). ANN model for prediction of powder packing. Journal of the European Ceramic Society, 27(2-3), 641-644. doi:10.1016/j.jeurceramsoc.2006.04.044en_US
dc.identifier.issn0955-2219
dc.identifier.issn0955-2219-
dc.identifier.issn1873-619X-
dc.identifier.urihttp://doi.org/10.1016/j.jeurceramsoc.2006.04.044
dc.identifier.urihttp://hdl.handle.net/11147/2291
dc.description.abstractA multilayer feed forward backpropagation (MFFB) learning algorithm was used as an artificial neural network (ANN) tool to predict packing of fused alumina powder mixtures of three different sizes in green state. The data used in model construction were collected by mixing and pressing powders with average particle sizes of 350, 30 and 3 μm and with narrow particle size distributions. The data sets that were composed of green densities of cylindrical pellets were first randomly partitioned into two for training and testing of the ANN models. Based on the training data an ANN model of the packing efficiencies was created with low average error levels (3.36%). Testing of the model was also performed with successfully good average error levels of 3.39%.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofJournal of the European Ceramic Societyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAluminaen_US
dc.subjectArtificial neural networksen_US
dc.subjectPorosityen_US
dc.subjectPressingen_US
dc.titleANN model for prediction of powder packingen_US
dc.typeArticleen_US
dc.authoridTR11535en_US
dc.authoridTR3591en_US
dc.institutionauthorSütçü, Mücahit-
dc.institutionauthorAkkurt, Sedat-
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.volume27en_US
dc.identifier.issue2-3en_US
dc.identifier.startpage641en_US
dc.identifier.endpage644en_US
dc.identifier.wosWOS:000243265100037en_US
dc.identifier.scopus2-s2.0-33750974431en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.jeurceramsoc.2006.04.044-
dc.relation.doi10.1016/j.jeurceramsoc.2006.04.044en_US
dc.coverage.doi10.1016/j.jeurceramsoc.2006.04.044en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.09. Department of Materials Science and Engineering-
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2291.pdfMakale551.16 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

15
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

9
checked on Nov 9, 2024

Page view(s)

520
checked on Nov 18, 2024

Download(s)

474
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.