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bstract

multilayer feed forward backpropagation (MFFB) learning algorithm was used as an artificial neural network (ANN) tool to predict packing of
used alumina powder mixtures of three different sizes in green state. The data used in model construction were collected by mixing and pressing
owders with average particle sizes of 350, 30 and 3 �m and with narrow particle size distributions. The data sets that were composed of green

ensities of cylindrical pellets were first randomly partitioned into two for training and testing of the ANN models. Based on the training data
n ANN model of the packing efficiencies was created with low average error levels (3.36%). Testing of the model was also performed with
uccessfully good average error levels of 3.39%.

2006 Elsevier Ltd. All rights reserved.
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. Introduction

The packing of particles has always been of interest to
eramists because a good packing particle compact will fire to
igher densities. Such increases in densities result from reduc-
ion of diffusion distances and attainment of a larger number
f particle-to-particle contacts. The resulting fraction of pores
ithin the fired product is small. Therefore, it is important that

eramics are formed from well-packing mixtures of particles.
he works on packing of particles may be divided into two cate-
ories: the discrete particle size distributions and the continuous
article size distributions.

Furnas’s work deals with discrete particle size distributions
or the packing of discrete particles sizes.1 He states that best
acking occurs when finer particles exactly fill the space within
he larger particles. When the size classes are three, the finest
articles must fill the void space within the medium sized par-
icles which themselves fill the spaces between the larger sized
articles. The size ratio of coarse to fine particles ideally should
e infinitely large to optimize packing. In real systems, how-

ver, ratios like 20:1 or 10:1 are common. The larger the ratio
he closer it is to the theory that explains packing of discrete
articles.1 It is, on the other hand, difficult to produce perfect
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onodispersions to use in such systems. Since monodispersions
re difficult to achieve, most of the studies deal with discrete
ize classes like one bounded by adjacent sieves. The fraction of
omplete particle size distributions that is bounded between two
ieves is in fact a continuous distribution but it is nevertheless
he closest to a monodispersion in process systems.

Another contribution to particle packing came from West-
an and Hugill who developed an algorithm that used discrete

heory of packing.2 They demonstrated a procedure for mixtures
f two and three different sizes and gave an algorithm for
igher number of size classes. McGeary proposed a discrete
pproach to packing of particles that were used as nuclear fuel
ellets.3

Andreassen’s work,4 however, constitutes the basis for con-
inuous particle size distributions where all particle sizes are
resent. He concluded that an appropriate packing theory
hould be one developed specifically for continuous distribu-
ions. Andreassen4 described the theory for the derivation of
is equation from dimensional analysis and geometry. Granu-
ation images of particles of two neighboring size classes were
mployed. Irrespective of the magnification, the same image was
bserved that led him to the particle size distribution equation
or particle packing:

( )n
CPFT

100%
= D

DL

here CPFT is the cumulative percent finer than the size (D),
nd DL is the largest particle size. Andreassen also confirmed
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he validity of his equation via experimental tests and concluded
hat the distribution modulus, n should be between 0.33 and 0.5
o obtain a dense packing.

Dinger and Funk later recognized that there should be a
mallest particle size for packing equation of Andreassen.5

herefore, they offered the following equation:

CPFT

100%
= Dn − Dn

S

Dn
L − Dn

S

here DS is the size of the smallest particle. The densest packing
as calculated to occur when n is equal to 0.37. Real powders

nalyzed for distributions are well known to show bending of the
PFT versus log size curves. Hence, Dinger and Funk equation

s closer to real distributions. In many discussions on packing
f real particles, however, Andreassen’s distribution provides
good fit. An example is the packing of refractory ceramics,
hich have a large size difference between neighboring size

lasses.
Zheng and Reed worked on the improved equations of the

ontinuous particle size distribution for dense packing.6 These
quations provide a method to study a continuous particle size
istribution according to the principle of the Furnas model,
hich takes the volume fraction of fine and coarse particles

s the function of their pore fractions for densest packing
ithout considering the particle shape. Zou et al. has recently
orked on the packing of mono-sized and multi-sized mixtures
f wet coarse spheres.7,8 Their results indicated that porosity
as strongly affected by particle size, their distribution and
oisture content. Guerin et al. worked on the prediction of

ommercial alumina powder compact density using ANNs but
he powders used in their study were not fused and hence not
ully dense.9 Another study on packing prediction was done by
ilva et al. who used statistical experimental design techniques

o create a response surface of the particle compacts.10 So, to
he knowledge of the authors, no study has yet been reported on
rediction of powder compact densities using fully dense fused
articles.

Neural network simulator algorithms for the prediction of
ercent porosities in three different sized fused alumina powder
ixtures are developed in this study. ANNs are extensively used

o model complex systems in a wide range of fields.11,12 The
omputational details about the ANN model construction are
ell documented in the literature.12 Therefore, such information
ill not be presented here.

. Data collection

Abrasive grade fused alumina powders of three different
izes were obtained from Treibacher Co., Austria.13 The particle
hapes and sizes are shown in Fig. 1. As can be seen in Fig. 1,
he powders were all very dense and fused with little amount
f pores. The size distributions of the particles were narrow
ecause these powders were obtained from an abrasive manu-

acturer that has to meet strict limitations for sizes (FEPA).14

number of blends (15 g each) were prepared from the above
owders as follows (Fig. 2). Nine grams of distilled water was
dded to 15 g of powder mixture and the suspension was stirred

T
u
o
H

Fig. 1. SEM image of the powders mixed in this study.

y a magnetic stirrer for 2 h. After oven drying at 110 ◦C for 2 h
gglomerates were broken in mortar and pestle before addition
f 20 drops of 5% PVA solution and 3–5 ml of ethyl alcohol.
he powder mixtures were then dried in oven, homogenized by

sing mortar and pestle, and pressed at 100 MPa in the form
f cylindrical pellets of 15 mm diameter and 6–10 mm height.
eight and diameter of pellets were measured with a precision
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Fig. 2. Triangular plot of powder mixtures.

n
d

able 1
he data that was used for the creation of the ANN model and the results of testing o

lend code % Coarse, F46
D50 = 350

% Medium,
F320 D50 = 30

% Fine, F1200
D50 = 3

Measu
porosi

AAE for training = 3.36%
4 40 40 20 28.8
44 70 30 0 31.9
20 50 0 50 32.8
42 30 70 0 37.4
62 10 0 90 44.3
25 70 0 30 28.9
34 20 20 60 35.9
55 10 10 80 40.9
6 50 10 40 29.4
12 50 40 10 27.2
22 20 30 50 35.1
47 0 30 70 31.6
7 40 20 40 29.2
48 30 0 70 38.6
14 20 50 30 29.8
15 30 50 20 31.9
23 10 40 50 32.9
39 0 70 30 34.9
10 50 30 20 26.4
17 60 20 20 24.7
24 0 50 50 35.8

AAE for testing = 3.39%
29 20 60 20 33.0
3 30 40 30 30.3
51 10 80 10 40.4
8 30 30 40 30.5
9 20 40 40 32.1
1 40 30 30 27.8
54 90 0 10 33.8
18 50 50 0 32.9
33 30 10 60 36.0
49 80 10 10 25.8

orosities of pellets were obtained in green state. Porosities predicted by MIX10 soft
a PAAE: percent average absolute error.
n Ceramic Society 27 (2007) 641–644 643

alliper (Mitutoyo CD-15CP) and the porosities were calculated
Table 1).

. Model construction

In this study, a three layer feed forward ANN architecture
as constructed. In the input layer, there were three neurons for

he three input variables. In the hidden layer, three neurons were
hosen by trial and error. Finally, in the output layer, one neuron
as used for the output variable of percent porosity. The input
ariables were as follows:

x1: percent coarse (powder code: F46);
x2: percent medium (powder code: F320);
x3: percent fine (powder code: F1200);
y: percent porosity.
Neurons in each layer were fully connected to every single
euron in the neighbouring layers. No bias term was utilized
uring modelling but a momentum term was used to help obtain

f the ANN model

red
ty, %

ANN predicted
porosity, %

MIX10 predicted
porosity, %

PAAEa for
ANN model

28.4 30.6 1.4
31.2 34.6 2.1
32.6 32.5 0.6
37.3 27.4 0.2
43.3 22.9 2.2
29.5 34.6 2.0
34.9 21.1 2.8
40.2 21.8 1.8
28.4 32.5 3.5
28.1 32.5 3.3
32.9 21.1 6.2
34.7 20.4 9.9
28.8 30.6 1.4
40.7 27.4 5.5
32.7 21.1 9.6
31.3 27.4 1.9
33.4 17.1 1.5
34.4 25.0 1.5
26.6 32.5 0.7
26.2 33.7 6.2
33.6 19.0 6.0

33.7 23.9 2.3
30.4 27.4 0.4
37.2 27.3 8.0
30.6 27.4 0.3
32.4 21.1 0.8
27.9 30.6 0.4
34.4 35.8 1.8
31.8 32.5 3.3
36.1 27.4 0.3
30.0 35.3 16.3

ware are also included.
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ig. 3. Observed vs. predicted values of the percent porosity for training of the
NN model.

aster convergence during iterations. There were a total of 31
ata sets 21 of which were used for the training of the ANN and
he remaining 10 were for the testing of the model. Each data set
ad four components (x1, x2, x3; y), three of which were the input
ariables while the fourth one was the output variable. The pro-
ram operated for 20,000 iterations and the optimal weights were
alculated with an percentage average absolute error (PAAE) for
earning of 3.36% for percent porosity (Table 1; Fig. 3). The r2

alue for learning was 0.92. The model was then tested with
hysically measured data using the remaining 10 data sets. The
esults of testing runs are also given in Table 1 and Fig. 4, where
he low magnitude of percentage error of 3.39% (or r2 = 0.85)
ndicated that the testing was successfully performed. Because
f the limited number of experimental data only ten testing out-
uts were compared to real measured data. Large test data sets
re always preferred when possible. As can be seen in Table 1
nd Figs. 3 and 4, the performance of the model was quite satis-
actory. More data is being collected and the work is in progress
or three component powder mixing systems.

The individual powder size distributions employed in this
tudy were not truly monodispersions but were narrow size dis-
ributions. Attempts were also made to predict the density of
he three component mixtures using Dinger and Funk’s MIX10
oftware.15 But the results obtained from the software did not
rovide good predictions with the measured data in this study

Table 1). Dinger suggested that these discrepancies resulted
rom the excessively large number of interparticle frictions
aused by the fine sized particles in the compact.5 These fric-
ions apparently interrupted the movements of the fine particles

ig. 4. Observed vs. predicted values of the percent porosity for testing of the
NN model.
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1

1

1

1

n Ceramic Society 27 (2007) 641–644

o fit in their expected void spaces between the larger particles as
as the assumption in Westman and Hugill’s algorithm. Dinger

lso proposed that MIX10 software was not developed to handle
arrow size distributions like in this study.

. Conclusions

In this study, an ANN model was developed for the predic-
ion of percent porosity in three component powder mixtures.
he satisfactory predictions of the observed percent porosities
y the model indicated that ANN could be a useful tool for
odelling such powder mixtures. A comparison of the ANN
odel was made to MIX10 predictions and it was found that
IX10 was poor in predicting porosities in mixtures of powder

hat are distributed in a narrow size range. Fused powders used
n this study were manufactured primarily for use as a grind-
ng material. Therefore, they had narrow size distributions due
o specifications required by users. MIX10 was therefore not
ffective in packing prediction in this study. The ANN model
ould be utilized by engineers to locate the best packing mixture
ombination.
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