Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2243
Title: Liquid-Phase Oxidation of Carvacrol Using Zeolite-Encapsulated Metal Complexes
Authors: Güneş, Alev
Bayraktar, Oğuz
Yılmaz, Selahattin
Keywords: Oxidation
Zeolites
X-ray diffraction
Acetonitrile
Hydrogen peroxide
Publisher: American Chemical Society
Source: Güneş, A., Bayraktar, O., and Yılmaz, S. (2006). Liquid-phase oxidation of carvacrol using zeolite-encapsulated metal complexes. Industrial and Engineering Chemistry Research, 45(1), 54-61. doi:10.1021/ie050185o
Abstract: We report here the use of zeolite-encapsulated metal (salpn) complexes as catalysts in the oxidation reaction of the natural compound carvacrol in acetonitrile with hydrogen peroxide as the oxidant. No previous studies on the oxidation of carvacrol in the presence of metal salpn complexes have been reported. By using a general flexible ligand method, Cr(III), Fe(III), Bi(III), Ni(II), and Zn(II) complexes of N,N′-bis(salicylidene)propane1,3-diamine (H2salpn) encapsulated in NaY zeolite were prepared. All catalysts were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses to confirm the complex encapsulation. The activities of all prepared catalysts for the oxidation of carvacrol and hydrogen peroxide were tested. The performances of all catalysts were compared on the basis of the leaching test results and carvacrol conversions. Thymohydroquinone and benzoquinones were observed as byproducts at high conversions of carvacrol. No product was formed in the absence of a catalyst. Fe(salpn)-NaY catalyst exhibited the highest carvacrol conversion of 27.6% with a yield of 22.0%, followed by Cr(salpn)-NaY catalyst with 23.5% carvacrol conversion and a yield of 17.6%. Other catalysts have shown relatively lower performances in terms of carvacrol conversion and leaching. The Cr(salpn)-NaY catalyst was found to be a more efficient catalyst than others on the basis of leaching and activity tests. With the selected catalyst Cr (salpn)-NaY, the effects of temperature and carvacrol/hydrogen peroxide molar ratio on carvacrol oxidation reactions were investigated. Increasing the temperature from 40 to 60 °C caused an increase in the thymoquinone yield from 6.2% to 16.0%. An increase in carvacrol/hydrogen peroxide molar ratio from 1 to 3 resulted in a decrease in the thymoquinone yield.
URI: http://doi.org/10.1021/ie050185o
http://hdl.handle.net/11147/2243
ISSN: 0888-5885
0888-5885
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
2243.pdfMakale231.72 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

11
checked on Nov 30, 2024

Page view(s)

366
checked on Dec 23, 2024

Download(s)

414
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.