Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2073
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanoğlu, Gamze-
dc.date.accessioned2016-08-10T11:28:03Z
dc.date.available2016-08-10T11:28:03Z
dc.date.issued2007-10
dc.identifier.citationTanoğlu, G. (2007). Solitary wave solution of nonlinear multi-dimensional wave equation by bilinear transformation method. Communications in Nonlinear Science and Numerical Simulation, 12(7), 1195-1201. doi:10.1016/j.cnsns.2005.12.006en_US
dc.identifier.issn1007-5704
dc.identifier.issn1007-5704-
dc.identifier.issn1878-7274-
dc.identifier.urihttp://doi.org/10.1016/j.cnsns.2005.12.006
dc.identifier.urihttp://hdl.handle.net/11147/2073
dc.description.abstractThe Hirota method is applied to construct exact analytical solitary wave solutions of the system of multi-dimensional nonlinear wave equation for n-component vector with modified background. The nonlinear part is the third-order polynomial, determined by three distinct constant vectors. These solutions have not previously been obtained by any analytic technique. The bilinear representation is derived by extracting one of the vector roots (unstable in general). This allows to reduce the cubic nonlinearity to a quadratic one. The transition between other two stable roots gives us a vector shock solitary wave solution. In our approach, the velocity of solitary wave is fixed by truncating the Hirota perturbation expansion and it is found in terms of all three roots. Simulations of solutions for the one component and one-dimensional case are also illustrated.en_US
dc.description.sponsorshipİYTE: 2003-İYTE-27en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofCommunications in Nonlinear Science and Numerical Simulationen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectWave equationsen_US
dc.subjectBilinear transformation methoden_US
dc.subjectNonlinear PDEen_US
dc.subjectPartial differential equationsen_US
dc.subjectSolitary wavesen_US
dc.subjectVector wave equationen_US
dc.titleSolitary wave solution of nonlinear multi-dimensional wave equation by bilinear transformation methoden_US
dc.typeArticleen_US
dc.authoridTR103234en_US
dc.institutionauthorTanoğlu, Gamze-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume12en_US
dc.identifier.issue7en_US
dc.identifier.startpage1195en_US
dc.identifier.endpage1201en_US
dc.identifier.wosWOS:000208278400011en_US
dc.identifier.scopus2-s2.0-34047166350en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.cnsns.2005.12.006-
dc.relation.doi10.1016/j.cnsns.2005.12.006en_US
dc.coverage.doi10.1016/j.cnsns.2005.12.006en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2073.pdfMakale255.08 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

18
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

16
checked on Nov 9, 2024

Page view(s)

3,024
checked on Nov 18, 2024

Download(s)

292
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.