Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2047
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAslan, Burak Galip-
dc.contributor.authorİnceoğlu, Mustafa Murat-
dc.date.accessioned2016-08-04T07:59:32Z-
dc.date.available2016-08-04T07:59:32Z-
dc.date.issued2007-
dc.identifier.citationAslan, B. G., and İnceoğlu, M. M. (2007). A comparative study on neural network based soccer result prediction. Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007), 545-550. doi:10.1109/ISDA.2007.12en_US
dc.identifier.isbn9780769529769-
dc.identifier.issn2164-7143-
dc.identifier.issn2164-7143-
dc.identifier.urihttp://doi.org/10.1109/ISDA.2007.12-
dc.identifier.urihttp://hdl.handle.net/11147/2047-
dc.description7th International Conference on Intelligent Systems Design and Applications, ISDA'07; Rio de Janeiro; Brazil; 22 October 2007 through 24 October 2007en_US
dc.description.abstractThis study mainly remarks the efficiency of black-box modeling capacity of neural networks in the case of forecasting soccer match results, and opens up several debates on the nature of prediction and selection of input parameters. The selection of input parameters is a serious problem in soccer match prediction systems based on neural networks or statistical methods. Several input vector suggestions are implemented in literature which is mostly based on direct data from weekly charts. Here in this paper, two different input vector parameters have been tested via learning vector quantization networks in order to emphasize the importance of input parameter selection. The input vector parameters introduced in this study are plain and also meaningful when compared to other studies. The results of different approaches presented in this study are compared to each other, and also compared with the results of other neural network approaches and statistical methods in order to give an idea about the successful prediction performance. The paper is concluded with discussions about the nature of soccer match forecasting concept that may draw the interests of researchers willing to work in this area.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofInternational Conference on Intelligent Systems Design and Applications, ISDA 2007en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNeural networksen_US
dc.subjectArtificial intelligenceen_US
dc.subjectGraphic methodsen_US
dc.subjectVector quantizationen_US
dc.subjectPrediction systemsen_US
dc.titleA comparative study on neural network based soccer result predictionen_US
dc.typeConference Objecten_US
dc.authoridTR114311en_US
dc.institutionauthorAslan, Burak Galip-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.startpage545en_US
dc.identifier.endpage550en_US
dc.identifier.wosWOS:000252223600088en_US
dc.identifier.scopus2-s2.0-48349118850en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/ISDA.2007.4389664-
dc.relation.doi10.1109/ISDA.2007.4389664en_US
dc.coverage.doi10.1109/ISDA.2007.4389664en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2047.pdfConference Paper253.33 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

14
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

8
checked on Nov 9, 2024

Page view(s)

434
checked on Nov 18, 2024

Download(s)

428
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.