Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/1940
Title: Degenerate Four-Virtual Resonance for the Kp-Ii
Authors: Pashaev, Oktay
Francisco, Meltem L. Y.
Keywords: Ablowitz-Kaup-Newell-Segur hierarchy
Dissipative soliton
Hirota method
Kadomtsev-Petviashvili equation
Reaction-diffusion system
Soliton resonance
Publisher: Pleiades Publishing
Source: Pashaev, O., and Francisco, M. L. Y. (2005). Degenerate four-virtual-soliton resonance for the KP-II. Theoretical and Mathematical Physics, 144(1), 1022-1029. doi:10.1007/s11232-005-0130-x
Abstract: We propose a method for solving the (2+1)-dimensional Kadomtsev- Petviashvili equation with negative dispersion (KP-II) using the second and third members of the disipative version of the AKNS hierarchy. We show that dissipative solitons (dissipatons) of those members yield the planar solitons of the KP-II. From the Hirota bilinear form of the SL(2,ℝ) AKNS flows, we formulate a new bilinear representation for the KP-II, by which we construct one- and two-soliton solutions and study the resonance character of their mutual interactions. Using our bilinear form, for the first time, we create a four-virtual-soliton resonance solution of the KP-II, and we show that it can be obtained as a reduction of a four-soliton solution in the Hirota-Satsuma bilinear form for the KP-II
URI: https://doi.org/10.1007/s11232-005-0130-x
http://hdl.handle.net/11147/1940
ISSN: 0040-5779
0040-5779
1573-9333
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
1940.pdfConference Paper201.73 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

15
checked on Nov 23, 2024

Page view(s)

288
checked on Dec 23, 2024

Download(s)

188
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.