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DEGENERATE FOUR-VIRTUAL-SOLITON RESONANCE FOR THE

KP-II

O. K. Pashaev∗ and M. L. Y. Francisco∗

We propose a method for solving the (2+1)-dimensional Kadomtsev–Petviashvili equation with negative

dispersion (KP-II) using the second and third members of the disipative version of the AKNS hierarchy.

We show that dissipative solitons (dissipatons) of those members yield the planar solitons of the KP-II.

From the Hirota bilinear form of the SL(2, R) AKNS flows, we formulate a new bilinear representation for

the KP-II, by which we construct one- and two-soliton solutions and study the resonance character of their

mutual interactions. Using our bilinear form, for the first time, we create a four-virtual-soliton resonance

solution of the KP-II, and we show that it can be obtained as a reduction of a four-soliton solution in the

Hirota–Satsuma bilinear form for the KP-II.

Keywords: dissipative soliton, Ablowitz–Kaup–Newell–Segur hierarchy, Kadomtsev–Petviashvili equation,
Hirota method, soliton resonance, reaction–diffusion system

1. Introduction

A dissipative version of the AKNS hierarchy [1] was recently considered in connection with (1+1)-
dimensional (lineal) gravity models [2]. It was found that the second flow described by the dissipative
version of the nonlinear Schrödinger (NLS) equation, the so-called reaction–diffusion system, admits new
soliton-type solutions called dissipatons. Dissipatons have exponentially growing and decaying amplitudes
with a perfect soliton shape for their bilinear product and a resonance interaction behavior.

In the present paper, we study resonance dissipative solitons (dissipatons) in the AKNS hierarchy and
show that they yield the planar solitons of the (2+1)-dimensional Kadomtsev–Petviashvili equation with
negative dispersion (KP-II). Our approach is based on a method for generating solutions of the (2+1)-
dimensional KP equation: we show that if a simultaneous solution of the second and third flows of the
AKNS hierarchy is considered, then the product e+e− satisfies the KP-II (see the proposition in Sec. 4).
Using these results, we construct a new bilinear representation of the KP-II with one- and two-soliton
solutions. We show that our two-soliton solution corresponds to the degenerate four-soliton solution in the
standard Hirota form of the KP and displays a four-virtual-soliton resonance.

2. The SL(2, R) AKNS hierarchy

The dissipative SL(2, R) AKNS hierarchy of evolution equations
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where N = 0, 1, 2, . . . , Λ < 0, is generated by the recursion operator �,
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The second and third members of AKNS hierarchy are then
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System (3), the dissipative version of the NLS equation, is called the reaction–diffusion (RD) system [2].
It is connected with the gauge theoretical formulation of (1+1)-dimensional gravity, constant-curvature
surfaces in pseudo-Euclidean space [2], and the NLS soliton problem in the quantum potential [2], [3].

3. Resonance dissipatons in the AKNS hierarchy

3.1. Dissipatons of the RD system. The second member of the AKNS hierarchy, RD system (3),
by the substitution

e± =

√
8
−Λ

G±(x, t)
F (x, t)

(5)

admits the Hirota bilinear representation, t ≡ t1,

(±Dt − D2
x)(G± · F ) = 0, D2

x(F · F ) = −2G+G−. (6)

Any solution of this system then determines a solution of RD system (3). The simplest solution of bilinear
system (6) has the form [3]
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1 )
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where η±
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1 x ± (k±
1 )2t + η

±(0)
1 . This solution determines a soliton-type solution of the RD system with

exponentially growing and decaying amplitudes, called the dissipaton [2]. But for the product e+e−, we
have the perfect one-soliton shape
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Fig. 1

The RD system has a geometric interpretation in the language of constant-curvature surfaces [2]. It
follows that when e± satisfy RD equations (3), the Riemannian metric describes a two-dimensional pseudo-
Riemannian space–time with the constant curvature Λ: R = gµνRµν = Λ. If we calculate the metric for
one-dissipaton solution (7), it shows a singularity (sign change) at tanhk(x−vt) = ±v/2k. This singularity
(called the causal singularity) has a physical interpretation in terms of black-hole physics and relates to the
resonance properties of solitons. In fact, constructing a two-dissipaton solution, we find that it describes a
collision of two dissipatons creating a resonance (metastable) bound state [3].

3.2. Dissipatons for the third flow. For the third flow of the AKNS hierarchy, we have cubic
dispersion system (4). The bilinear representation of this system for the functions e±(x, t) in terms of three
real functions G± and F , as in (5), is

(Dt + D3
x)(G± · F ) = 0, D2

x(F · F ) = −2G+G−. (9)

From the last equation, we have the expression for the product
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The simplest solution of this system,

G± = ±eη±
1 , F = 1 +

e(η+
1 +η−

1 )

(k+
1 + k−

1 )2
, (11)

where η±
1 = k±

1 x − (k±
1 )3t + η

±(0)
1 , defines a one-dissipaton solution of system (4),
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/k+
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1 , and φ11 = −2 log k+−

11 . The resonance interaction
from three to two dissipatons for system (4) is illustrated in Fig. 1.
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System (4) admits the symmetric reduction e+ = e− = u, leading to the MKdV equation

ut2 = uxxx +
3Λ
4

u2ux. (13)

Under this reduction, k+
1 = k−

1 ≡ k, and dissipaton (12) becomes a one-soliton solution of the MKdV
equation,

e+ = e− = u(x, t) =

√
8
−Λ

|k|
coshk(x − k2t − x0)

. (14)

We can thus see that the dissipaton is a more general object reducible to the real soliton of the MKdV
equation. Similarly, the two-dissipaton solution of system (4) under the reduction k+

1 = k−
1 , k+

2 = k−
2 is

reducible to the two-soliton solution of the MKdV equation. The natural problem is to find an evolution
equation for the dissipaton product e+e−. As we show below, it is the KP-II.

4. The KP-II resonance solitons

4.1. The KP-II and the AKNS hierarchy. The AKNS hierarchy also allows developing a new
method for finding a solution of the (2+1)-dimensional KP equation. Depending on the sign of the disper-
sion, two types of the KP equations are known. The minus sign in the right-hand side of the KP corresponds
to the case of negative dispersion and is called the KP-II. To relate the KP-II to the AKNS hierarchy, we
consider the pair of functions e+(x, y, t) and e−(x, y, t) satisfying the second and third members of the dissi-
pative AKNS hierarchy. Here, we rename the time variables t1 ≡ y and t2 ≡ t. Respectively differentiating
Eqs. (3) and (4) with respect to t and y, we can see that they are compatible.

Proposition. Let the functions e+(x, y, t) and e−(x, y, t) be simultaneous solutions of Eqs. (3) and (4).
Then the function U(x, y, t) ≡ e+e− satisfies the KP-II

(
4Ut +

3Λ
4

(U2)x + Uxxx

)
x

= −3Uyy. (15)

Proof. We take the derivative of U with respect to y and use Eq. (3). Hence, Uy = (e+
x e− − e−x e+)x,
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(
e+

xxxe− + e−xxxe+ − (e+
x e−x )x

)
+

Λ
2

UxU. (16)

Similarly for Ut, we have
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(

e+
xxxe− +
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4

Ue−e−x + e−xxxe+ +
3Λ
4

Ue−x e+

)
, (17)

Uxt = −
(

e+
xxxe− + e−xxxe+ +

3Λ
4

UUx

)
x

. (18)

Combining these formulas,

4Uxt + 3Uyy =
[
−e+

xxxe− − e−xxxe+ − 3Λ
2

UUx − 3(e+
x e−x )x

]
x

, (19)

and using Uxxx = e+
xxxe− + e−xxxe+ + 3e+

xxe−x + 3e+
x e−xx, we obtain KP-II (15).1

1As Konopelchenko recently mentioned to us, similar results are also known in the literature as symmetry reductions of
the KP (see, e.g., [4]).
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4.2. Bilinear representation of the KP-II by AKNS flows. Using bilinear representations for
systems (3) and (4) and the proposition, we can find a bilinear representation for the KP-II. The bilinear
form is given by (6) for RD system (3) and by Eqs. (9) for the third flow, system (4).

We now consider G± and F as functions of three variables, G± = G±(x, y, t) and F = F (x, y, t), and
require that these functions be a simultaneous solution of bilinear systems (6) and (9). Because the second
equation in both systems is the same, it suffices to consider the next bilinear system




(±Dy − D2
x)(G± · F ) = 0,

(Dt + D3
x)(G± · F ) = 0,

D2
x(F · F ) = −2G+G−.

(20)

According to the proposition, any solution of this system then generates a solution of the KP-II. From the
last equation, we can derive U directly in terms of only function F ,

U = e+e− =
8
−Λ

G+G−

F 2
=

4
Λ

D2
x(F · F )

F 2
=

8
Λ

∂2

∂x2
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The simplest solution of this system,

G± = ±eη±
1 , F = 1 +
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1 +η−

1 )

(k+
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1 )2
, (22)

where η±
1 = k±

1 x±(k±
1 )2y−(k±

1 )3t+η
±(0)
1 , defines a one-soliton solution of the KP-II according to Eq. (21),
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2
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3
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where γ = − log(k+
1 + k−

1 )2 + η
+(0)
1 + η

−(0)
1 . This soliton is a planar wave barrier traveling in an arbitrary

direction and is called the planar soliton.

4.3. Two-soliton solution. Continuing Hirota’s expansion, we find a two-soliton solution in the
form

G± = ±(eη±
1 + eη±

2 + α±
1 eη+

1 +η−
1 +η±

2 + α±
2 eη+

2 +η−
2 +η±

1 ), (24)

F = 1 +
eη+

1 +η−
1

(k+−
11 )2

+
eη+

1 +η−
2(

k+−
12

)2 +
eη+

2 +η−
1

(k+−
21 )2

+
eη+

2 +η−
2

(k+−
22 )2

+ βeη+
1 +η−

1 +η+
2 +η−

2 , (25)

where η±
i = k±

i x ± (k±
i )2y − (k±

i )3t + η
±(0)
i and kab

ij = ka
i + kb

j , i, j = 1, 2, a, b = +,−,

α±
1 =

(k±
1 − k±

2 )2

(k+−
11 k±∓

21 )2
, α±

2 =
(k±

1 − k±
2 )2

(k+−
22 k±∓

12 )2
, β =

(k+
1 − k+

2 )2(k−
1 − k−

2 )2

(k+−
11 k+−

12 k+−
21 k+−

22 )2
.

It provides a two-soliton solution of the KP-II regular everywhere according to Eq. (21).

4.4. Degenerate four-soliton solution. Another bilinear form in terms of only the function F is
known for the KP-II [5],

(DxDt + D4
x + D2

y)(F · F ) = 0. (26)
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It is therefore natural to compare the soliton solutions of our bilinear equations (20) with the ones given
by this equation. To solve Eq. (26), we consider F = 1 + εF1 + ε2F2 + . . . . The solution F1 = eη1 ,
where η1 = k1x + Ω1y + ω1t + η0

1 , the dispersion is k1ω1 + k4
1 + Ω2

1 = 0, and Fn = 0, n = 2, 3, . . . , under
identifications k1 = k+

1 + k−
1 , Ω1 =

√
3 (k+2

1 − k−2
1 ), and ω1 = −4(k+3

1 + k−3
1 ) and with the rescaling

4t → t and
√

3 y → y determines a one-soliton solution of KP-II (15). We realize that it coincides with our
one-soliton solution (23). But the two-soliton solution of Eq. (26) [6] does not correspond to our two-soliton
solution (24), (25). The appearance of four different terms eη±

i +η±
k in Eq. (25) suggests that our two-soliton

solution should correspond to some degenerate case of the four-soliton solution of Eq. (26).2 To construct
a four-soliton solution, we first find the solutions of bilinear equations (26),

F1 = eη1 , F2 = eη2 , F4 = eη3 , (27)

where ηi = kix + Ωiy + ωit + η0
i , i = 1, 2, 3, the dispersion relations are

kiωi + k4
i + Ω2

i = 0, (28)

and

F3 = α12e
η1+η2 , F5 = α13e

η1+η3 , F6 = α23e
η1+η3 , (29)

where

αij = − (ki − kj)(ωi − ωj) + (ki − kj)4 + (Ωi − Ωj)2

(ki + kj)(ωi + ωj) + (ki + kj)4 + (Ωi + Ωj)2
, i, j = 1, 2, 3. (30)

We then parameterize our solution in the form

k1 = k+
1 + k−

1 , ω1 = −4(k+3
1 + k−3

1 ), Ω1 =
√

3 (k+2
1 − k−2

1 ),

k2 = k+
2 + k−

2 , ω2 = −4(k+3
2 + k−3

2 ), Ω2 =
√

3 (k+2
2 − k−2

2 ),

k3 = k+
1 + k−

2 , ω3 = −4(k+3
1 + k−3

2 ), Ω3 =
√

3 (k+2
1 − k−2

2 ),

k4 = k+
2 + k−

1 , ω4 = −4(k+3
2 + k−3

1 ), Ω4 =
√

3 (k+2
2 + k−2

1 ),

(31)

satisfying dispersion relations (28). Substituting these parameterizations in the above solutions, we find
that

α13 = 0 ⇒ F5 = 0, α23 = 0 ⇒ F6 = 0. (32)

Continuing Hirota’s expansion with the solution F7 = eη4 , where η4 = k4x + Ω4y + ω4t + η0
4 , we find that

F8 = α14e
η1+η4 , where

α14 = − (k1 − k4)(ω1 − ω4) + (k1 − k4)4 + (Ω1 − Ω4)2

(k1 + k4)(ω1 + ω4) + (k1 + k4)4 + (Ω1 + Ω4)2
, (33)

and after parameterization (31), it also vanishes:

α14 = 0 ⇒ F8 = 0. (34)

2One of the authors (O. K. P.) thanks Professor J. Hietarinta for this suggestion.
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Fig. 2

The next solution F9 = α24e
η2+η4 , where

α24 = − (k2 − k4)(ω2 − ω4) + (k2 − k4)
4 + (Ω2 − Ω4)

2

(k2 + k4)(ω2 + ω4) + (k2 + k4)
4 + (Ω2 + Ω4)

2 , (35)

is also zero:

α24 = 0 ⇒ F9 = 0. (36)

We then have F10 = 0 and F11 = α34e
η3+η4 , where

α34 = − (k3 − k4)(ω3 − ω4) + (k3 − k4)
4 + (Ω3 − Ω4)

2

(k3 + k4)(ω3 + ω4) + (k3 + k4)
4 + (Ω3 + Ω4)

2 . (37)

When we check it for higher-order terms, we find that F12 = F13 = · · · = 0. Therefore, we have a degenerate
four-soliton solution of Eqs. (26) in the form

F = 1 + eη1 + eη2 + eη3 + eη4 + α12e
η1+η2 + α34e

η3+η4 . (38)

Comparing this solution with the one in Eq. (25) and taking into account that η1 + η2 = η3 + η4

according to parameterization (31), we find that they coincide. The above consideration shows that our
two-soliton solution of the KP-II can be obtained by reducing the four-soliton solution in canonical Hirota
form (26). Moreover, it allows finding a new four-virtual-soliton resonance for the KP-II.

4.5. Resonance interaction of planar solitons. Choosing different values of parameters for our
two-soliton solution, we find the resonance character of the soliton–soliton interaction. For the parameter
choice k+

1 = 2, k−
1 = 1, k+

2 = 1, and k−
2 = 0.3 and a zero value of the position-shift constants, we obtain

a two-soliton solution moving in the plane with a constant velocity with the creation of the four so-called
virtual solitons, i.e., solitons without asymptotic states at infinity (Fig. 2).

The resonance character of the interactions of our planar solitons is related to the resonance nature
of the dissipatons considered in Sec. 3. It has also been reported for several systems, but the four-virtual-
soliton resonance does not seem to have been obtained for the KP-II [7] prior to our work. At the workshop
“Nonlinear Physics: Theory and Experiment III,” we realized that Biondini and Kodama, using Sato’s
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theory, also very recently constructed resonance solitons for the KP-II [8]. A comparison shows that our
bilinear constraint plays the same role as the Toda lattice in their paper.

5. Conclusions

The idea to use a couple of equations from the AKNS hierarchy to generate a solution of the KP can
also be applied to multidimensional systems with a zero-curvature structure, such as the Chern–Simons
gauge theory. Our three-dimensional zero-curvature representation of the KP-II gives a flat non-Abelian
connection for SL(2, R) and corresponds to a sector of the three-dimensional gravity theory. We recently
showed that an idea similar to the one presented here can also be applied to the Kaup–Newell hierarchy. In
this case, combining the second and third flows of the dissipative version of the derivative NLS equation,
we found resonance soliton dynamics for a modified KP-II [9].
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