Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15424
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBasırlı, H.-
dc.contributor.authorAteş, N.-
dc.contributor.authorSeyrantepe, V.-
dc.date.accessioned2025-03-25T22:55:17Z-
dc.date.available2025-03-25T22:55:17Z-
dc.date.issued2025-
dc.identifier.issn0301-4851-
dc.identifier.urihttps://doi.org/10.1007/s11033-025-10380-y-
dc.identifier.urihttps://hdl.handle.net/11147/15424-
dc.description.abstractBackground: Tay-Sachs disease is a neurodegenerative disorder characterized by a build-up of GM2 ganglioside in the brain, which results in progressive central nervous system dysfunction. Our group recently generated Hexa-/-Neu3-/- mice, a murine model with neuropathological abnormalities similar to the infantile form of Tay-Sachs disease. Previously, we reported progressive neurodegeneration with neuronal loss in the brain sections of Hexa-/-Neu3-/- mice. However, the relationship between the severity of neurodegeneration and the imbalance in redox homeostasis was not yet clarified in Hexa-/-Neu3-/- mice. Here, we evaluated whether neurodegeneration is associated with oxidative stress in the tissues and cells of Hexa-/-Neu3-/- mice and neuroglia cells from Tay-Sachs patients. Methods and results: Cell death and oxidative stress-related markers were evaluated in four brain regions and fibroblasts of 5-month-old WT, Hexa-/-, Neu3-/-, and Hexa-/-Neu3-/- mice and human neuroglia cells using Western blot, RT-PCR, and immunohistochemistry analyses. We further analyzed oxidative stress levels in the samples using flow cytometry analyses. We discovered neuronal death, alterations in intracellular ROS levels, and damaging effects of oxidative stress, especially in the cerebellum and fibroblasts of Hexa-/-Neu3-/- mice. Conclusions: Our results showed that alteration in redox homeostasis might be related to neurodegeneration in the murine model of Tay-Sachs Disease. These findings suggest that targeting the altered redox balance and increased oxidative stress might be a rational therapeutic approach for alleviating neurodegeneration and treating Tay-Sachs disease. © The Author(s), under exclusive licence to Springer Nature B.V. 2025.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (215Z083); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK; Turkish Higher Education Council, (2211-A); TUBITAK-France, (120N552)en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media B.V.en_US
dc.relation.ispartofMolecular Biology Reportsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCell Deathen_US
dc.subjectNeurodegenerationen_US
dc.subjectOxidative Stressen_US
dc.subjectReactive Oxygen Speciesen_US
dc.subjectTay-Sachs Diseaseen_US
dc.titleImbalance in Redox Homeostasis Is Associated With Neurodegeneration in the Murine Model of Tay-Sachs Diseaseen_US
dc.typeArticleen_US
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume52en_US
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-86000039381-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s11033-025-10380-y-
dc.identifier.pmid40042748-
dc.authorscopusid57855425700-
dc.authorscopusid57195980858-
dc.authorscopusid6602725956-
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ3-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.