Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15316
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnan, Emrah-
dc.date.accessioned2025-02-05T09:52:45Z-
dc.date.available2025-02-05T09:52:45Z-
dc.date.issued2024-
dc.identifier.isbn9798350379433-
dc.identifier.urihttps://doi.org/10.1109/ASYU62119.2024.10757157-
dc.identifier.urihttps://hdl.handle.net/11147/15316-
dc.descriptionIEEE SMC; IEEE Turkiye Sectionen_US
dc.description.abstractMetaphor is a common literary mechanism that allows abstract concepts to be conceptualised using more concrete terminology. Existing methods rely on either end-to-end models or hand-crafted pre-processing steps. Generating well-defined training datasets for supervised models is a time-consuming operation for this type of problem. There is also a lack of pre-processing steps for resource-poor natural languages. In this study, we propose an approach for detecting Turkish metaphorical concepts. Initially, we collect non-literal concepts including their meaning and reference sentences by employing a Turkish dictionary. Secondly, we generate a graph by discovering super-sense relations between sample texts including target metaphorical expressions in Turkish WordNet. We also compute weights for relations based on the path closeness and word occurrences. Finally, we classify the texts by leveraging a weighted graph embedding model. The evaluation setup indicates that the proposed approach reaches the best F1 and Gmean scores of 0.83 and 0.68 for the generated test sets when we use feature vector representations of the Node2Vec model as the input of the logistic regression for detecting metaphors in Turkish texts. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 16 October 2024 through 18 October 2024 -- Ankara -- 204562.0en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMetaphor Dataseten_US
dc.subjectMetaphor Detectionen_US
dc.subjectNode2Vec Modelen_US
dc.subjectTurkishen_US
dc.titleApplying Weighted Graph Embeddings To Turkish Metaphor Detectionen_US
dc.typeConference Objecten_US
dc.institutionauthorİnan, Emrah-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.scopus2-s2.0-85213332798-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/ASYU62119.2024.10757157-
dc.authorscopusid55623306000-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
15316.pdf320.87 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

18
checked on Feb 17, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.