Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15290
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCavdaroglu, Cagri-
dc.contributor.authorAltug, Nur-
dc.contributor.authorSerpen, Arda-
dc.contributor.authorOztop, Mecit Halil-
dc.contributor.authorOzen, Banu-
dc.date.accessioned2025-02-05T09:48:39Z-
dc.date.available2025-02-05T09:48:39Z-
dc.date.issued2025-
dc.identifier.issn0963-9969-
dc.identifier.issn1873-7145-
dc.identifier.urihttps://doi.org/10.1016/j.foodres.2024.115616-
dc.identifier.urihttps://hdl.handle.net/11147/15290-
dc.descriptionOzen, Banu/0000-0002-0428-320X; Cavdaroglu, Cagri/0000-0001-6334-3586en_US
dc.description.abstractThe detection of adulteration in apple juice concentrate is critical for ensuring product authenticity and consumer safety. This study evaluates the effectiveness of artificial neural networks (ANN) and support vector machines (SVM) in analyzing spectroscopic data to detect adulteration in apple juice concentrate. Four techniques-UV-visible, fluorescence, near-infrared (NIR) spectroscopy, and time domain 1H nuclear magnetic resonance relaxometry (1H NMR)-were used to generate data from both authentic and adulterated apple juice samples. Adulterants included glucose syrup, fructose syrup, grape concentrate, and date concentrate. The spectroscopic data were pre-processed and analyzed using ANN and SVM models, with performance metrics such as sensitivity, specificity, and correct classification rates (CCR) evaluated for both calibration and validation sets. Results indicated that NIR spectroscopy combined with SVM provided the highest overall accuracy, with nearperfect specificity and high CCR values, making it the most robust method for adulteration detection. UV-visible and fluorescence spectroscopy also demonstrated strong performance but were slightly less consistent across different adulterants. 1H NMR relaxometry, while providing detailed molecular insights, showed variable sensitivity depending on the adulterant type. The findings showed the importance of selecting appropriate analytical techniques and machine learning models for food authentication. This study contributes to the development of non-destructive, rapid, and accurate methods for detecting food adulteration, which can help support industry efforts to enhance product integrity and maintain consumer trust.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectApple Juiceen_US
dc.subjectAdulterationen_US
dc.subjectNuclear Magnetic Resonance Relaxometryen_US
dc.subjectNear-Ir Spectroscopyen_US
dc.subjectUv-Visible Spectroscopyen_US
dc.subjectFluorescence Spectroscopyen_US
dc.subjectMachine-Learningen_US
dc.titleComparative Performance of Artificial Neural Networks and Support Vector Machines in Detecting Adulteration of Apple Juice Concentrate Using Spectroscopy and Time Domain Nmr☆en_US
dc.typeArticleen_US
dc.authoridOzen, Banu/0000-0002-0428-320X-
dc.authoridCavdaroglu, Cagri/0000-0001-6334-3586-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume201en_US
dc.identifier.wosWOS:001400447500001-
dc.identifier.scopus2-s2.0-85213957661-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.foodres.2024.115616-
dc.identifier.pmid39849775-
dc.authorscopusid57220006244-
dc.authorscopusid59499162500-
dc.authorscopusid8578862800-
dc.authorscopusid8267460900-
dc.authorscopusid6603013605-
dc.authorwosidçavdaroğlu, çağrı/HJH-5941-2023-
dc.authorwosidOzen, Banu/D-7493-2013-
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept01. Izmir Institute of Technology-
crisitem.author.dept03.08. Department of Food Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

10
checked on Feb 17, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.