Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/15222
Title: | One-Step Hydrothermal Synthesis of Spinel Manganese Oxide Ion-Sieve From Commercial Γ-Mno2 and Its Uptake Performance for Lithium | Authors: | Toprak, S. Demir, M.M. |
Keywords: | Electrolytic manganese dioxide Geothermal brine Hydrothermal method Lithium extraction Spinel lithium manganese oxide |
Publisher: | Elsevier Ltd | Abstract: | The selective extraction of lithium from aqueous systems necessitates efficient sorbent materials. Spinel-type lithium manganese oxide ion sieves (LMOs) have been bee recognized for their high performance in this application. However, the elevated market cost of the spinel form (λ-MnO2) raises economic concerns, posing challenges to the feasibility of the extraction process. In this study, the one-step hydrothermal synthesis of Li1.33Mn1.67O4 was carried out at 200 °C for 7 days using commercial γ-MnO2 powder and aqueous LiOH solution as reactants. The synthesized powder exhibited characteristic XRD reflections consistent with spinel Li1.33Mn1.67O4. Lithium ion-sieve (H1.33Mn1.67O4) was obtained by leaching the LMO product with dilute hydrochloric acid solution. The sorption capacity of γ-MnO2 is increased from 8.4 to 23.1 mg/g (C0=200 mg/L), this capacity is very close to the one of the commercial λ-MnO2. The synthesized spinel HMO sorbent achieved a maximum Langmuir adsorption capacity of 52.1 mg/g. The extraction efficiency reached 94% at the sorbent dose of 20 g/L. The distribution coefficients of metal ions were in the order Li+ > Ca2+ > K+ > Na+, emphasizing selective Li+ extraction from brines with high Na+ content. These findings highlight the successful development of a spinel-type lithium manganese oxide ion sieve from γ-MnO2 polymorph, which is nearly an order of magnitude cheaper than the selective λ-MnO2. The study addresses critical issue of economic feasibility in lithium extraction processes, providing a potential solution for the selective recovery of bulk lithium. © 2024 Elsevier Ltd | URI: | https://doi.org/10.1016/j.chemosphere.2024.143891 https://hdl.handle.net/11147/15222 |
ISSN: | 0045-6535 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.