Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/15044
Title: | Hydrogen Production From Energetic Poplar and Waste Sludge by Electrohydrogenesis Using Membraneless Microbial Electrolysis Cells | Authors: | Goren, A. Yagmur Kilicaslan, A. Faruk Dincer, Ibrahim Khalvati, Ali |
Keywords: | Energetic poplar Biomass Waste sludge Hydrogen production Microbial electrolysis cell Energy |
Publisher: | Pergamon-elsevier Science Ltd | Abstract: | Membraneless microbial electrolysis cells (MECs) are potentially considered to produce biohydrogen (bioH2) in a green manner and simultaneously minimize agricultural and wastewater facility wastes. However, effective, sustainable, and cost-effective system configuration and improvement of operating variables, working at ambient conditions, are needed to make the MEC a sustainable process. Therefore, this study investigates the bioH2 production from poplar leaves and anaerobic sludge mixture by incorporating nanomaterials comprising Al2O3, MgO, and Fe2O3 metal oxides at various dosages. Moreover, the effects of applied cell voltage (0.5-1.5 V) and inoculum amount (20-40 mL) on bioH2 production and organic matter removal performance are evaluated. The maximum bioH2 production value is 417 mL at an applied voltage of 1.5 V with a chemical oxygen demand (COD) removal efficiency of 37.6 % under operating times of 5 min using 40 ml of inoculum. The bioH2 production of the MEC system is reduced with the decrease in inoculum amount. The highest bioH2 production of 828 mL is obtained at improved conditions in the presence of 1 g of Fe2O3 metal oxide. Overall, this study provides the potentiality of simultaneous waste minimization and bioH2 production under ambient conditions that highlight the waste-to-energy pathway for membraneless and green bioelectrochemical process. | URI: | https://doi.org/10.1016/j.renene.2024.121750 https://hdl.handle.net/11147/15044 |
ISSN: | 0960-1481 1879-0682 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.