Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15044
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoren, A. Yagmur-
dc.contributor.authorKilicaslan, A. Faruk-
dc.contributor.authorDincer, Ibrahim-
dc.contributor.authorKhalvati, Ali-
dc.date.accessioned2024-11-25T19:06:26Z-
dc.date.available2024-11-25T19:06:26Z-
dc.date.issued2024-
dc.identifier.issn0960-1481-
dc.identifier.issn1879-0682-
dc.identifier.urihttps://doi.org/10.1016/j.renene.2024.121750-
dc.identifier.urihttps://hdl.handle.net/11147/15044-
dc.description.abstractMembraneless microbial electrolysis cells (MECs) are potentially considered to produce biohydrogen (bioH2) in a green manner and simultaneously minimize agricultural and wastewater facility wastes. However, effective, sustainable, and cost-effective system configuration and improvement of operating variables, working at ambient conditions, are needed to make the MEC a sustainable process. Therefore, this study investigates the bioH2 production from poplar leaves and anaerobic sludge mixture by incorporating nanomaterials comprising Al2O3, MgO, and Fe2O3 metal oxides at various dosages. Moreover, the effects of applied cell voltage (0.5-1.5 V) and inoculum amount (20-40 mL) on bioH2 production and organic matter removal performance are evaluated. The maximum bioH2 production value is 417 mL at an applied voltage of 1.5 V with a chemical oxygen demand (COD) removal efficiency of 37.6 % under operating times of 5 min using 40 ml of inoculum. The bioH2 production of the MEC system is reduced with the decrease in inoculum amount. The highest bioH2 production of 828 mL is obtained at improved conditions in the presence of 1 g of Fe2O3 metal oxide. Overall, this study provides the potentiality of simultaneous waste minimization and bioH2 production under ambient conditions that highlight the waste-to-energy pathway for membraneless and green bioelectrochemical process.en_US
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEnergetic poplaren_US
dc.subjectBiomassen_US
dc.subjectWaste sludgeen_US
dc.subjectHydrogen productionen_US
dc.subjectMicrobial electrolysis cellen_US
dc.subjectEnergyen_US
dc.titleHydrogen Production From Energetic Poplar and Waste Sludge by Electrohydrogenesis Using Membraneless Microbial Electrolysis Cellsen_US
dc.typeArticleen_US
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume237en_US
dc.identifier.wosWOS:001350376300001-
dc.identifier.scopus2-s2.0-85207695948-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.renene.2024.121750-
dc.authorscopusid56329481700-
dc.authorscopusid58937590000-
dc.authorscopusid56278550500-
dc.authorscopusid58567249500-
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept03.07. Department of Environmental Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

32
checked on Dec 30, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.