Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14732
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaçar,M.D.-
dc.contributor.authorAllmer,J.-
dc.date.accessioned2024-09-24T15:50:11Z-
dc.date.available2024-09-24T15:50:11Z-
dc.date.issued2014-
dc.identifier.isbn978-162703747-1-
dc.identifier.issn1064-3745-
dc.identifier.urihttps://doi.org/10.1007/978-1-62703-748-8_10-
dc.identifier.urihttps://hdl.handle.net/11147/14732-
dc.description.abstractMicroRNAs (miRNAs) are single-stranded, small, noncoding RNAs of about 22 nucleotides in length, which control gene expression at the posttranscriptional level through translational inhibition, degradation, adenylation, or destabilization of their target mRNAs. Although hundreds of miRNAs have been identified in various species, many more may still remain unknown. Therefore, discovery of new miRNA genes is an important step for understanding miRNA-mediated posttranscriptional regulation mechanisms. It seems that biological approaches to identify miRNA genes might be limited in their ability to detect rare miRNAs and are further limited to the tissues examined and the developmental stage of the organism under examination. These limitations have led to the development of sophisticated computational approaches attempting to identify possible miRNAs in silico. In this chapter, we discuss computational problems in miRNA prediction studies and review some of the many machine learning methods that have been tried to address the issues. © Springer Science+Business Media New York 2014.en_US
dc.language.isoenen_US
dc.publisherHumana Press Inc.en_US
dc.relation.ispartofMethods in Molecular Biologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassificationen_US
dc.subjectExamplesen_US
dc.subjectMachine learningen_US
dc.subjectmiRNA gene detectionen_US
dc.subjectmiRNA gene predictionen_US
dc.subjectTest dataen_US
dc.titleMachine Learning Methods for Microrna Gene Predictionen_US
dc.typeArticleen_US
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume1107en_US
dc.identifier.startpage177en_US
dc.identifier.endpage187en_US
dc.identifier.scopus2-s2.0-84934444923-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/978-1-62703-748-8_10-
dc.identifier.pmid24272437-
dc.authorscopusid55735789200-
dc.authorscopusid24821311300-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ4-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

33
checked on Jan 3, 2025

Page view(s)

32
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.