Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/14421
Title: | GPPRMon: GPU Runtime Memory Performance and Power Monitoring Tool | Authors: | Topçu,B. Öz,I. |
Keywords: | GPGPUs Performance monitoring Power consumption |
Publisher: | Springer Science and Business Media Deutschland GmbH | Series/Report no.: | Lecture Notes in Computer Science | Abstract: | Graphics Processing Units (GPUs) perform highly efficient parallel execution for high-performance computation and embedded system domains. While performance concerns drive the main optimization efforts, power issues become important for energy-efficient GPU executions. While performance profilers and architectural simulators offer statistics about the target execution, they either present only performance metrics in a coarse kernel function level or lack visualization support that enables performance bottleneck analysis or performance-power consumption comparison. Evaluating both performance and power consumption dynamically at runtime and across GPU memory components enables a comprehensive tradeoff analysis for GPU architects and software developers. This paper presents a novel memory performance and power monitoring tool for GPU programs, GPPRMon, which performs a systematic metric collection and offers useful visualization views to track power and performance optimizations. Our simulation-based framework dynamically collects microarchitectural metrics by monitoring individual instructions and reports achieved performance and power consumption information at runtime. Our visualization interface presents spatial and temporal views of the execution. While the first demonstrates the performance and power metrics across GPU memory components, the latter shows the corresponding information at the instruction granularity in a timeline. Our case study reveals the potential usages of our tool in bottleneck identification and power consumption for a memory-intensive graph workload. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. | Description: | Oz, Isil/0000-0002-8310-1143 | URI: | https://doi.org/10.1007/978-3-031-48803-0_2 | ISBN: | 978-303148802-3 | ISSN: | 0302-9743 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.