Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14421
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTopçu,B.-
dc.contributor.authorÖz,I.-
dc.date.accessioned2024-05-05T14:59:37Z-
dc.date.available2024-05-05T14:59:37Z-
dc.date.issued2024-
dc.identifier.isbn978-303148802-3-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-48803-0_2-
dc.descriptionOz, Isil/0000-0002-8310-1143en_US
dc.description.abstractGraphics Processing Units (GPUs) perform highly efficient parallel execution for high-performance computation and embedded system domains. While performance concerns drive the main optimization efforts, power issues become important for energy-efficient GPU executions. While performance profilers and architectural simulators offer statistics about the target execution, they either present only performance metrics in a coarse kernel function level or lack visualization support that enables performance bottleneck analysis or performance-power consumption comparison. Evaluating both performance and power consumption dynamically at runtime and across GPU memory components enables a comprehensive tradeoff analysis for GPU architects and software developers. This paper presents a novel memory performance and power monitoring tool for GPU programs, GPPRMon, which performs a systematic metric collection and offers useful visualization views to track power and performance optimizations. Our simulation-based framework dynamically collects microarchitectural metrics by monitoring individual instructions and reports achieved performance and power consumption information at runtime. Our visualization interface presents spatial and temporal views of the execution. While the first demonstrates the performance and power metrics across GPU memory components, the latter shows the corresponding information at the instruction granularity in a timeline. Our case study reveals the potential usages of our tool in bottleneck identification and power consumption for a memory-intensive graph workload. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.en_US
dc.description.sponsorshipCOST Association; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (122E395); CERCIRAS COST, (CA19135)en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) -- International workshops held at the 29th International Conference on Parallel and Distributed Computing, Euro-Par 2023 -- 28 August 2023 through 1 September 2023 -- Limassol -- 311039en_US
dc.relation.ispartofseriesLecture Notes in Computer Science-
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGPGPUsen_US
dc.subjectPerformance monitoringen_US
dc.subjectPower consumptionen_US
dc.titleGPPRMon: GPU Runtime Memory Performance and Power Monitoring Toolen_US
dc.typeConference Objecten_US
dc.authoridOz, Isil/0000-0002-8310-1143-
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume14352 LNCSen_US
dc.identifier.startpage17en_US
dc.identifier.endpage29en_US
dc.identifier.wosWOS:001279248600002-
dc.identifier.scopus2-s2.0-85190973776-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/978-3-031-48803-0_2-
dc.authorscopusid57672081800-
dc.authorscopusid37097877800-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ3-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

90
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.