Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14350
Title: Improved Senescent Cell Segmentation on Bright-Field Microscopy Images Exploiting Representation Level Contrastive Learning
Authors: Celebi, Fatma
Boyvat, Dudu
Ayaz-Guner, Serife
Tasdemir, Kasim
Icoz, Kutay
Keywords: cellular senescence
instance segmentation
mask R-CNN
microscopy images
self-supervised learning
SimCLR
Publisher: Wiley
Abstract: Mesenchymal stem cells (MSCs) are stromal cells which have multi-lineage differentiation and self-renewal potentials. Accurate estimation of total number of senescent cells in MSCs is crucial for clinical applications. Traditional manual cell counting using an optical bright-field microscope is time-consuming and needs an expert operator. In this study, the senescence cells were segmented and counted automatically by deep learning algorithms. However, well-performing deep learning algorithms require large numbers of labeled datasets. The manual labeling is time consuming and needs an expert. This makes deep learning-based automated counting process impractically expensive. To address this challenge, self-supervised learning based approach was implemented. The approach incorporates representation level contrastive learning component into the instance segmentation algorithm for efficient senescent cell segmentation with limited labeled data. Test results showed that the proposed model improves mean average precision and mean average recall of downstream segmentation task by 8.3% and 3.4% compared to original segmentation model.
URI: https://doi.org/10.1002/ima.23052
https://hdl.handle.net/11147/14350
ISSN: 0899-9457
1098-1098
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

Page view(s)

122
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.