Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14350
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCelebi, Fatma-
dc.contributor.authorBoyvat, Dudu-
dc.contributor.authorAyaz-Guner, Serife-
dc.contributor.authorTasdemir, Kasim-
dc.contributor.authorIcoz, Kutay-
dc.date.accessioned2024-05-05T14:56:57Z-
dc.date.available2024-05-05T14:56:57Z-
dc.date.issued2024-
dc.identifier.issn0899-9457-
dc.identifier.issn1098-1098-
dc.identifier.urihttps://doi.org/10.1002/ima.23052-
dc.identifier.urihttps://hdl.handle.net/11147/14350-
dc.description.abstractMesenchymal stem cells (MSCs) are stromal cells which have multi-lineage differentiation and self-renewal potentials. Accurate estimation of total number of senescent cells in MSCs is crucial for clinical applications. Traditional manual cell counting using an optical bright-field microscope is time-consuming and needs an expert operator. In this study, the senescence cells were segmented and counted automatically by deep learning algorithms. However, well-performing deep learning algorithms require large numbers of labeled datasets. The manual labeling is time consuming and needs an expert. This makes deep learning-based automated counting process impractically expensive. To address this challenge, self-supervised learning based approach was implemented. The approach incorporates representation level contrastive learning component into the instance segmentation algorithm for efficient senescent cell segmentation with limited labeled data. Test results showed that the proposed model improves mean average precision and mean average recall of downstream segmentation task by 8.3% and 3.4% compared to original segmentation model.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcellular senescenceen_US
dc.subjectinstance segmentationen_US
dc.subjectmask R-CNNen_US
dc.subjectmicroscopy imagesen_US
dc.subjectself-supervised learningen_US
dc.subjectSimCLRen_US
dc.titleImproved senescent cell segmentation on bright-field microscopy images exploiting representation level contrastive learningen_US
dc.typeArticleen_US
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume34en_US
dc.identifier.issue2en_US
dc.identifier.wosWOS:001179096400001-
dc.identifier.scopus2-s2.0-85186631307-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1002/ima.23052-
dc.authorscopusid57677898500-
dc.authorscopusid57972766200-
dc.authorscopusid33567596300-
dc.authorscopusid26538758900-
dc.authorscopusid24801985000-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

108
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.