Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/14301
Title: | Lithium treatment rescues dysfunctional autophagy in the cell models of Tay-Sachs disease | Authors: | Basirli,H. Can,M. Sengul,T. Seyrantepe,V. |
Keywords: | Autophagy Autophagy inducer lithium Lysosomal storage disorder Tay-Sachs disease |
Publisher: | Academic Press Inc. | Abstract: | Tay-Sachs disease is a rare lysosomal storage disorder (LSD) caused by a mutation in the HexA gene coding β-hexosaminidase A enzyme. The disruption of the HexA gene causes the accumulation of GM2 ganglioside resulting in progressive neurodegeneration in humans. Surprisingly, Hexa−/− mice did not show neurological phenotypes. Our group recently generated a murine model of Tay-Sachs disease exhibiting excessive GM2 accumulation and severe neuropathological abnormalities mimicking Tay-Sachs patients. Previously, we reported impaired autophagic flux in the brain of Hexa/-Neu3−/− mice. However, regulation of autophagic flux using inducers has not been clarified in Tay-Sachs disease cells. Here, we evaluated the effects of lithium treatment on dysfunctional autophagic flux using LC3 and p62 in the fibroblast and neuroglia of Hexa−/-Neu3−/− mice and Tay-Sachs patients. We discovered the clearance of accumulating autophagosomes, aggregate-prone metabolites, and GM2 ganglioside under lithium-induced conditions. Our data suggest that targeting autophagic flux with an autophagy inducer might be a rational therapeutic strategy for the treatment of Tay-Sachs disease. © 2024 Elsevier Inc. | URI: | https://doi.org/10.1016/j.ymgme.2024.108140 https://hdl.handle.net/11147/14301 |
ISSN: | 1096-7192 |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.