Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/14259
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arıkan, İ. | - |
dc.contributor.author | Ayav, T. | - |
dc.contributor.author | Seçkin, A.Ç. | - |
dc.contributor.author | Soygazi, F. | - |
dc.date.accessioned | 2024-01-30T09:24:44Z | - |
dc.date.available | 2024-01-30T09:24:44Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 1424-8220 | - |
dc.identifier.uri | https://doi.org/10.3390/s23249795 | - |
dc.identifier.uri | https://hdl.handle.net/11147/14259 | - |
dc.description.abstract | Accurate prediction of the estrus period is crucial for optimizing insemination efficiency and reducing costs in animal husbandry, a vital sector for global food production. Precise estrus period determination is essential to avoid economic losses, such as milk production reductions, delayed calf births, and disqualification from government support. The proposed method integrates estrus period detection with cow identification using augmented reality (AR). It initiates deep learning-based mounting detection, followed by identifying the mounting region of interest (ROI) using YOLOv5. The ROI is then cropped with padding, and cow ID detection is executed using YOLOv5 on the cropped ROI. The system subsequently records the identified cow IDs. The proposed system accurately detects mounting behavior with 99% accuracy, identifies the ROI where mounting occurs with 98% accuracy, and detects the mounting couple with 94% accuracy. The high success of all operations with the proposed system demonstrates its potential contribution to AR and artificial intelligence applications in livestock farming. © 2023 by the authors. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | en_US |
dc.relation.ispartof | Sensors | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | artificial intelligence | en_US |
dc.subject | augmented reality | en_US |
dc.subject | dairy cow identification | en_US |
dc.subject | deep learning | en_US |
dc.subject | estrus detection | en_US |
dc.subject | image processing | en_US |
dc.subject | livestock | en_US |
dc.subject | precision livestock farming | en_US |
dc.subject | transfer learning | en_US |
dc.subject | Augmented reality | en_US |
dc.subject | Dairies | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Farms | en_US |
dc.subject | Image segmentation | en_US |
dc.subject | Losses | en_US |
dc.subject | Dairy cow | en_US |
dc.subject | Dairy cow identification | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Estrus detection | en_US |
dc.subject | Images processing | en_US |
dc.subject | Livestock | en_US |
dc.subject | Precision livestock farming | en_US |
dc.subject | Region-of-interest | en_US |
dc.subject | Regions of interest | en_US |
dc.subject | Transfer learning | en_US |
dc.subject | Mountings | en_US |
dc.subject | animal | en_US |
dc.subject | artificial intelligence | en_US |
dc.subject | augmented reality | en_US |
dc.subject | bovine | en_US |
dc.subject | dairying | en_US |
dc.subject | deep learning | en_US |
dc.subject | estrus | en_US |
dc.subject | female | en_US |
dc.subject | livestock | en_US |
dc.subject | milk | en_US |
dc.subject | procedures | en_US |
dc.subject | Animals | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.subject | Augmented Reality | en_US |
dc.subject | Cattle | en_US |
dc.subject | Dairying | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | Estrus Detection | en_US |
dc.subject | Female | en_US |
dc.subject | Livestock | en_US |
dc.subject | Milk | en_US |
dc.title | Estrus Detection and Dairy Cow Identification with Cascade Deep Learning for Augmented Reality-Ready Livestock Farming | en_US |
dc.type | Article | en_US |
dc.institutionauthor | … | - |
dc.department | İzmir Institute of Technology | en_US |
dc.identifier.volume | 23 | en_US |
dc.identifier.issue | 24 | en_US |
dc.identifier.scopus | 2-s2.0-85180616159 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.3390/s23249795 | - |
dc.identifier.pmid | 38139641 | en_US |
dc.authorscopusid | 58781072000 | - |
dc.authorscopusid | 13408184500 | - |
dc.authorscopusid | 57103461800 | - |
dc.authorscopusid | 57220960947 | - |
dc.identifier.wosquality | Q2 | - |
dc.identifier.scopusquality | Q2 | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
4
checked on Nov 15, 2024
Page view(s)
148
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.