Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14200
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇakı, O.-
dc.contributor.authorKaraçalı, B.-
dc.date.accessioned2024-01-06T07:22:36Z-
dc.date.available2024-01-06T07:22:36Z-
dc.date.issued2022-
dc.identifier.issn1868-1743-
dc.identifier.urihttps://doi.org/10.1002/minf.202100118-
dc.identifier.urihttps://hdl.handle.net/11147/14200-
dc.description.abstractIn-silico compound-protein interaction prediction addresses prioritization of drug candidates for experimental biochemical validation because the wet-lab experiments are time-consuming, laborious and costly. Most machine learning methods proposed to that end approach this problem with supervised learning strategies in which known interactions are labeled as positive and the rest are labeled as negative. However, treating all unknown interactions as negative instances may lead to inaccuracies in real practice since some of the unknown interactions are bound to be positive interactions waiting to be identified as such. In this study, we propose to address this problem using the Quasi-Supervised Learning (QSL) algorithm. In this framework, potential interactions are predicted by estimating the overlap between a true positive dataset of compound-protein pairs with known interactions and an unknown dataset of all the remaining compound-protein pairs. The potential interactions are then identified as those in the unknown dataset that overlap with the interacting pairs in the true positive dataset in terms of the associated similarity structure. We also address the class-imbalance problem by modifying the conventional cost function of the QSL algorithm. Experimental results on GPCR and Nuclear Receptor datasets show that the proposed method can identify actual interactions from all possible combinations. © 2021 Wiley-VCH GmbH.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Incen_US
dc.relation.ispartofMolecular Informaticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChemoinformaticsen_US
dc.subjectCompound Similarityen_US
dc.subjectCompound-Protein Interactionsen_US
dc.subjectDrug Discoveryen_US
dc.subjectMachine Learningen_US
dc.subjectCost functionsen_US
dc.subjectDrug interactionsen_US
dc.subjectLearning algorithmsen_US
dc.subjectLearning systemsen_US
dc.subjectSupervised learningen_US
dc.subjectChemoinformaticsen_US
dc.subjectCompound similarityen_US
dc.subjectCompound-protein interactionen_US
dc.subjectDrug discoveryen_US
dc.subjectIn-silicoen_US
dc.subjectInteraction predictionen_US
dc.subjectMachine-learningen_US
dc.subjectProtein interactionen_US
dc.subjectQuasi-supervised learningen_US
dc.subjectTrue positiveen_US
dc.subjectProteinsen_US
dc.subjectalpha 2C adrenergic receptoren_US
dc.subjectamcinonideen_US
dc.subjectbeta 1 adrenergic receptoren_US
dc.subjectbeta 2 adrenergic receptoren_US
dc.subjectbetaxololen_US
dc.subjectbisoprololen_US
dc.subjectcell nucleus receptoren_US
dc.subjectchenodeoxycholic aciden_US
dc.subjectchlorpromazineen_US
dc.subjectchlorpromazine derivativeen_US
dc.subjectchlorpromazine hibenzateen_US
dc.subjectchlorpromazine phenolphthalinateen_US
dc.subjectcholesterolen_US
dc.subjectcicloprololen_US
dc.subjectclozapineen_US
dc.subjectdenopamineen_US
dc.subjectdipivefrineen_US
dc.subjectdopamine 2 receptoren_US
dc.subjectdopamine 3 receptoren_US
dc.subjectdydrogesteroneen_US
dc.subjectepinephrineen_US
dc.subjecteplerenoneen_US
dc.subjectestrogen receptor alphaen_US
dc.subjectethinylestradiolen_US
dc.subjectetretinateen_US
dc.subjectfenoldopam mesilateen_US
dc.subjectfluoxymesteroneen_US
dc.subjectG protein coupled receptoren_US
dc.subjecthistamine H1 receptoren_US
dc.subjecthydrocortisoneen_US
dc.subjectisoetarineen_US
dc.subjectisotretinoinen_US
dc.subjectlevodopaen_US
dc.subjectloteprednol etabonateen_US
dc.subjectmethoxamineen_US
dc.subjectmetixeneen_US
dc.subjectmetoprololen_US
dc.subjectmifepristoneen_US
dc.subjectmuscarinic M3 receptoren_US
dc.subjectnandrolone phenpropionateen_US
dc.subjectnorethisteroneen_US
dc.subjectoxandroloneen_US
dc.subjectoxymetazolineen_US
dc.subjectperphenazineen_US
dc.subjectpregnenoloneen_US
dc.subjectprogesterone receptoren_US
dc.subjectretinoic acid receptor betaen_US
dc.subjectretinoic acid receptor gammaen_US
dc.subjectretinoid X receptor alphaen_US
dc.subjectretinoid X receptor gammaen_US
dc.subjectritodrineen_US
dc.subjectsalbutamolen_US
dc.subjectsalbutamol sulfateen_US
dc.subjectspironolactoneen_US
dc.subjecttazaroteneen_US
dc.subjectterbutaline sulfateen_US
dc.subjecttestosteroneen_US
dc.subjectunclassified drugen_US
dc.subjectproteinen_US
dc.subjectArticleen_US
dc.subjectchemical interactionen_US
dc.subjectcompound protein interactionen_US
dc.subjectgenome analysisen_US
dc.subjectintermethod comparisonen_US
dc.subjectkernel methoden_US
dc.subjectKolmogorov Smirnov testen_US
dc.subjectlearning algorithmen_US
dc.subjectmachine learningen_US
dc.subjectmolecular fingerprintingen_US
dc.subjectpairwise kernel methoden_US
dc.subjectpredictionen_US
dc.subjectprotein interactionen_US
dc.subjectquasi supervised learning algorithmen_US
dc.subjectsemi supervised machine learningen_US
dc.subjectalgorithmen_US
dc.subjectchemistryen_US
dc.subjectAlgorithmsen_US
dc.subjectMachine Learningen_US
dc.subjectProteinsen_US
dc.titleQuasi-Supervised Strategies for Compound-Protein Interaction Predictionen_US
dc.typeArticleen_US
dc.institutionauthor-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume41en_US
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85119954344en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1002/minf.202100118-
dc.identifier.pmid34837345en_US
dc.authorscopusid57354233400-
dc.authorscopusid6603084273-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Dec 21, 2024

Page view(s)

156
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.