Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14193
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzkaya, E.-
dc.contributor.authorTopal, F.E.-
dc.contributor.authorBulut, T.-
dc.contributor.authorGursoy, M.-
dc.contributor.authorOzuysal, M.-
dc.contributor.authorKarakaya, Z.-
dc.date.accessioned2024-01-06T07:22:34Z-
dc.date.available2024-01-06T07:22:34Z-
dc.date.issued2022-
dc.identifier.issn1863-9933-
dc.identifier.urihttps://doi.org/10.1007/s00068-020-01468-0-
dc.identifier.urihttps://hdl.handle.net/11147/14193-
dc.description.abstractPurpose: The aim of this study is to determine the diagnostic performance of artificial intelligence with the use of convolutional neural networks (CNN) for detecting scaphoid fractures on anteroposterior wrist radiographs. The performance of the deep learning algorithm was also compared with that of the emergency department (ED) physician and two orthopaedic specialists (less experienced and experienced in the hand surgery). Methods: A total 390 patients with AP wrist radiographs were included in the study. The presence/absence of the fracture on radiographs was confirmed via CT. The diagnostic performance of the CNN, ED physician and two orthopaedic specialists (less experienced and experienced) as measured by AUC, sensitivity, specificity, F-Score and Youden index, to detect scaphoid fractures was evaluated and compared between the groups. Results: The CNN had 76% sensitivity and 92% specificity, 0.840 AUC, 0.680 Youden index and 0.826 F score values in identifying scaphoid fractures. The experienced orthopaedic specialist had the best diagnostic performance according to AUC. While CNN's performance was similar to a less experienced orthopaedic specialist, it was better than the ED physician. Conclusion: The deep learning algorithm has the potential to be used for diagnosing scaphoid fractures on radiographs. Artificial intelligence can be useful for scaphoid fracture diagnosis particularly in the absence of an experienced orthopedist or hand surgeon. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofEuropean Journal of Trauma and Emergency Surgeryen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectDeep learningen_US
dc.subjectFractureen_US
dc.subjectRadiographyen_US
dc.subjectScaphoiden_US
dc.subjectartificial intelligenceen_US
dc.subjectdiagnostic imagingen_US
dc.subjectfractureen_US
dc.subjecthumanen_US
dc.subjectradiographyen_US
dc.subjectscaphoid boneen_US
dc.subjectsensitivity and specificityen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectFractures, Boneen_US
dc.subjectHumansen_US
dc.subjectRadiographyen_US
dc.subjectScaphoid Boneen_US
dc.subjectSensitivity and Specificityen_US
dc.titleEvaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiographyen_US
dc.typeArticleen_US
dc.institutionauthor-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume48en_US
dc.identifier.issue1en_US
dc.identifier.startpage585en_US
dc.identifier.endpage592en_US
dc.identifier.scopus2-s2.0-85089963570en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s00068-020-01468-0-
dc.identifier.pmid32862314en_US
dc.authorscopusid57218671447-
dc.authorscopusid54404171100-
dc.authorscopusid36633921300-
dc.authorscopusid56190960700-
dc.authorscopusid9843586600-
dc.authorscopusid26665552000-
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

36
checked on Nov 15, 2024

Page view(s)

186
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.